login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249996
Expansion of 1/((1+2*x)*(1+3*x)*(1-4*x)).
3
1, -1, 15, -5, 191, 99, 2455, 3515, 33231, 74899, 474695, 1371435, 7071871, 23520899, 108399735, 390617755, 1691480111, 6378762099, 26676785575, 103221406475, 423343881951, 1661998662499, 6742129440215, 26686105001595, 107591675061391, 427824901526099, 1718925069371655
OFFSET
0,3
FORMULA
G.f.: 1 / ((1+2*x)*(1+3*x)*(1-4*x)).
a(n) = ( 2^(3+2*n) + (3^(3+n)-7*2^(1+n))*(-1)^n )/21. - Colin Barker, Dec 29 2014
a(n) = -a(n-1) + 14*a(n-2) + 24*a(n-3). - Colin Barker, Dec 29 2014
E.g.f.: (1/21)*(27*exp(-3*x) - 14*exp(-2*x) + 8*exp(4*x)). - G. C. Greubel, Oct 11 2022
MATHEMATICA
LinearRecurrence[{-1, 14, 24}, {1, -1, 15}, 41] (* G. C. Greubel, Oct 11 2022 *)
PROG
(PARI) Vec(1/((1+2*x)*(1+3*x)*(1-4*x)) + O(x^50)) \\ Michel Marcus, Dec 29 2014
(Magma) [(2^(2*n+3) +(-1)^n*(3^(n+3) -7*2^(n+1)))/21: n in [0..40]]; // G. C. Greubel, Oct 11 2022
(SageMath) [(2^(2*n+3) +(-1)^n*(3^(n+3) -7*2^(n+1)))/21 for n in range(41)] # G. C. Greubel, Oct 11 2022
CROSSREFS
Cf. A016269: expansion of 1/((1-2*x)*(1-3*x)*(1-4*x)).
Sequence in context: A147060 A110791 A241361 * A128251 A292307 A064107
KEYWORD
sign,easy
AUTHOR
Alex Ratushnyak, Dec 28 2014
STATUS
approved