login
A249993
Expansion of 1/((1+x)*(1+2*x)*(1-4*x)).
5
1, 1, 11, 29, 147, 525, 2227, 8653, 35123, 139469, 559923, 2235597, 8950579, 35785933, 143176499, 572640461, 2290692915, 9162509517, 36650562355, 146601200845, 586406900531, 2345623407821, 9382502019891, 37529991302349, 150119998763827, 600479927946445
OFFSET
0,3
FORMULA
G.f.: 1/((1+x)*(1+2*x)*(1-4*x)).
a(n) = ( 2^(3+2*n) + (5*2^(1+n) - 3)*(-1)^n )/15. Colin Barker, Dec 28 2014
a(n) = a(n-1) + 10*a(n-2) + 8*a(n-3). - Colin Barker, Dec 28 2014
E.g.f.: (1/15)*(10*exp(-2*x) - 3*exp(-x) + 8*exp(4*x)). - G. C. Greubel, Oct 10 2022
MATHEMATICA
CoefficientList[Series[1/((1+x)(1+2x)(1-4x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{1, 10, 8}, {1, 1, 11}, 30] (* Harvey P. Dale, Dec 13 2018 *)
PROG
(PARI) Vec(1/((1+x)*(1+2*x)*(1-4*x)) + O(x^40)) \\ Michel Marcus, Dec 28 2014
(Magma) [(2^(2*n+3) +(-1)^n*(5*2^(n+1)-3))/15: n in [0..40]]; // G. C. Greubel, Oct 10 2022
(SageMath) [(2^(2*n+3) +(-1)^n*(5*2^(n+1)-3))/15 for n in range(41)] # G. C. Greubel, Oct 10 2022
CROSSREFS
Cf. A249992.
Cf. A006095, A171477 for g.f. 1/((1-x)*(1-2*x)*(1-4*x)).
Cf. A015249, A084152, A084175 for g.f. 1/((1-x)*(1+2*x)*(1-4*x)).
Cf. A109765 for g.f. 1/((1+x)*(1-2*x)*(1-4*x)).
Sequence in context: A118638 A088460 A168171 * A080083 A115972 A099109
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, Dec 27 2014
STATUS
approved