login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249798
Numbers k such that the product of the first k primes minus the (k+1)-th prime is prime.
1
3, 4, 5, 6, 8, 22, 23, 24, 35, 73, 83, 147, 553, 1098, 1115, 1542, 2097, 2149, 8712, 19965, 25046, 30987, 38635
OFFSET
1,1
FORMULA
a(n) = primepi(A093078(n)). - Michel Marcus, Nov 06 2014
EXAMPLE
p(1)*p(2)*p(3)*p(4) - p(5) = 2*3*5*7 - 11 = 199. 199 is prime, therefore 4 is in the sequence.
MATHEMATICA
Select[Range[1000], PrimeQ[Times@@(Prime[Range[#]])-Prime[#+1]]&]
PROG
(PARI) lista(nn) = {prp = 1; for(n=1, nn, prp *= prime(n); if (isprime(prp-prime(n+1)), print1(n, ", ")); ); } \\ Michel Marcus, Nov 06 2014
CROSSREFS
Sequence in context: A094576 A103103 A217347 * A037348 A277898 A212640
KEYWORD
nonn,more
AUTHOR
Ivan N. Ianakiev, Nov 06 2014
EXTENSIONS
a(17)-a(18) using A093078 from Michael S. Branicky, Mar 18 2024
a(19)-a(23) from Henri Lifchitz, Nov 08 2024
STATUS
approved