login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that the product of the first k primes minus the (k+1)-th prime is prime.
1

%I #16 Nov 08 2024 15:19:41

%S 3,4,5,6,8,22,23,24,35,73,83,147,553,1098,1115,1542,2097,2149,8712,

%T 19965,25046,30987,38635

%N Numbers k such that the product of the first k primes minus the (k+1)-th prime is prime.

%F a(n) = primepi(A093078(n)). - _Michel Marcus_, Nov 06 2014

%e p(1)*p(2)*p(3)*p(4) - p(5) = 2*3*5*7 - 11 = 199. 199 is prime, therefore 4 is in the sequence.

%t Select[Range[1000],PrimeQ[Times@@(Prime[Range[#]])-Prime[#+1]]&]

%o (PARI) lista(nn) = {prp = 1; for(n=1, nn, prp *= prime(n); if (isprime(prp-prime(n+1)), print1(n, ", ")););} \\ _Michel Marcus_, Nov 06 2014

%Y Cf. A000040, A093078.

%K nonn,more

%O 1,1

%A _Ivan N. Ianakiev_, Nov 06 2014

%E a(17)-a(18) using A093078 from _Michael S. Branicky_, Mar 18 2024

%E a(19)-a(23) from _Henri Lifchitz_, Nov 08 2024