login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249763
Numbers k such that sigma(k) + 2 is prime.
3
1, 2, 8, 18, 49, 72, 98, 128, 196, 200, 242, 288, 361, 392, 441, 676, 968, 1369, 1521, 1568, 1764, 1800, 2178, 2401, 2450, 2888, 3200, 3362, 3528, 3969, 4232, 5000, 5476, 5776, 5929, 6241, 6272, 7056, 7200, 7442, 7688, 7938, 8281, 8450, 8649, 9025, 9522, 9604
OFFSET
1,2
COMMENTS
Except for 2, subsequence of nonprime numbers (A018252).
All odd terms are squares. - Michel Marcus, Dec 09 2014
Each term is either a square or twice a square. - Robert Israel, Dec 09 2014
LINKS
EXAMPLE
8 is in the sequence because sigma(8)+2 = 15+2 = 17 (prime).
MAPLE
N:= 10^5: # to get all terms <= N
select(n -> isprime(numtheory:-sigma(n)+2), {seq(i^2, i=1..floor(sqrt(N))), seq(2*i^2, i=1..floor(sqrt(N/2)))} );
# if using Maple 11 or earlier, uncomment the next line
# sort(convert(%, list)); # Robert Israel, Dec 09 2014
MATHEMATICA
Select[Range[10000], PrimeQ[DivisorSigma[1, #] + 2] &] (* Vincenzo Librandi, Nov 14 2014 *)
PROG
(Magma) [n: n in[1..100000] | IsPrime(SumOfDivisors(n) + 2)]
(PARI) for(n=1, 10^5, if(isprime(sigma(n)+2), print1(n, ", "))) \\ Derek Orr, Nov 13 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jaroslav Krizek, Nov 13 2014
STATUS
approved