login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that sigma(k) + 2 is prime.
3

%I #27 Sep 08 2022 08:46:10

%S 1,2,8,18,49,72,98,128,196,200,242,288,361,392,441,676,968,1369,1521,

%T 1568,1764,1800,2178,2401,2450,2888,3200,3362,3528,3969,4232,5000,

%U 5476,5776,5929,6241,6272,7056,7200,7442,7688,7938,8281,8450,8649,9025,9522,9604

%N Numbers k such that sigma(k) + 2 is prime.

%C Except for 2, subsequence of nonprime numbers (A018252).

%C All odd terms are squares. - _Michel Marcus_, Dec 09 2014

%C Each term is either a square or twice a square. - _Robert Israel_, Dec 09 2014

%H Robert Israel, <a href="/A249763/b249763.txt">Table of n, a(n) for n = 1..10000</a>

%e 8 is in the sequence because sigma(8)+2 = 15+2 = 17 (prime).

%p N:= 10^5: # to get all terms <= N

%p select(n -> isprime(numtheory:-sigma(n)+2), {seq(i^2,i=1..floor(sqrt(N))), seq(2*i^2,i=1..floor(sqrt(N/2)))} );

%p # if using Maple 11 or earlier, uncomment the next line

%p # sort(convert(%,list)); # _Robert Israel_, Dec 09 2014

%t Select[Range[10000], PrimeQ[DivisorSigma[1, #] + 2] &] (* _Vincenzo Librandi_, Nov 14 2014 *)

%o (Magma) [n: n in[1..100000] | IsPrime(SumOfDivisors(n) + 2)]

%o (PARI) for(n=1,10^5,if(isprime(sigma(n)+2),print1(n,", "))) \\ _Derek Orr_, Nov 13 2014

%Y Cf. A000040, A000203, A018252.

%K nonn,easy

%O 1,2

%A _Jaroslav Krizek_, Nov 13 2014