login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249519
Expansion of 4*x/(16*x+(sqrt(2)*sqrt(sqrt(1-16*x)+1)-1)*sqrt(1-16*x)-1).
1
1, 5, 59, 782, 10915, 156890, 2298254, 34115772, 511402275, 7723927970, 117355941274, 1791748546692, 27465854168974, 422452379203652, 6516524753922620, 100771332997219832, 1561717224800526627, 24249283134262469490, 377165907419518984802, 5875218357778513634100
OFFSET
0,2
LINKS
FORMULA
G.f.: 4*x/(16*x+(sqrt(2)*sqrt(sqrt(1-16*x)+1)-1)*sqrt(1-16*x)-1).
a(n) = Sum_{i = 0..n} 2^i*binomial(2*n-i-1,n-i)*binomial(2*n+i-1,i).
a(n) ~ (1+sqrt(2)) * 2^(4*n-2) / sqrt(Pi*n). - Vaclav Kotesovec, Oct 31 2014
D-finite with recurrence: n*(2*n-1)*(n-1)*a(n) -2*(n-1)*(32*n^2-64*n+39)*a(n-1) +16*(4*n-5)*(4*n-7)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jun 07 2016
MATHEMATICA
CoefficientList[Series[4 x/(16 x + Sqrt[2] Sqrt[Sqrt[1 - 16 x] + 1] Sqrt[1 - 16 x] - Sqrt[1 - 16 x] - 1), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 31 2014 *)
PROG
(Maxima) a(n):=sum(2^i*binomial(2*n-i-1, n-i)*binomial(2*n+i-1, i), i, 0, n);
(PARI) a(n)=sum(i=0, n, 2^i*binomial(2*n-i-1, n-i)*binomial(2*n+i-1, i)) \\ M. F. Hasler, Oct 31 2014
CROSSREFS
Sequence in context: A113055 A020468 A093946 * A371327 A001059 A290702
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Oct 31 2014
STATUS
approved