login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249520
Expansion of: G.f.: 2-(2*x)/(1-sqrt(sqrt(1-16*x)+1)/sqrt(2)).
1
1, 5, 17, 134, 1333, 14890, 178394, 2240268, 29101197, 387793090, 5271628846, 72818272852, 1019157450818, 14421479205284, 205978607191508, 2965567162041368, 42994130150806077, 627124332791860146, 9196734644381065510, 135516564162069215748, 2005456310676742385910
OFFSET
0,2
LINKS
FORMULA
a(n) = (Sum_{i=0..n} 2^i*binomial(2*(n-1)+i-1,i)*binomial(2*n-i-2,n-i))/(n-1), n>1, a(0)=1, a(1)=5.
a(n) ~ (3+2*sqrt(2)) * 2^(4*n-9/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 31 2014
D-finite with recurrence: n*(n-1)*(2*n-3)*a(n) -2*(n-1)*(32*n^2-128*n+135)*a(n-1) +16*(2*n-5)*(4*n-9)*(4*n-11)*a(n-2)=0. - R. J. Mathar, Jan 25 2020
a(n) = 2^(2*n-1)*C(n-1) + C(2*n-1) + 2*C(2*n-2), for n>0, where C(n) is the n-th Catalan number, A000108. - Ira M. Gessel, Dec 10 2020
a(n) = binomial(2*n - 2, n)*hypergeom([-n, 2*n - 2], [2 - 2*n], 2)/(n - 1) for n >= 2. - Peter Luschny, Dec 10 2020
MAPLE
a := n -> `if`(n=0, 1, `if`(n=1, 5, ((4^(2*n-1))/((+2*n-1)*(4*n-3)*(4*n-1) *Pi*GAMMA(1+2*n)))*((6*sqrt(Pi)*(1-2*n)^2*GAMMA(2*n+1/2)+4^n*(4*n-3)*(4*n-1)*GAMMA(n+1/2)^2)))): seq(a(n), n=0..18); # Peter Luschny, Oct 31 2014
MATHEMATICA
CoefficientList[Series[2-(2*x)/(1-Sqrt[Sqrt[1-16*x]+1]/Sqrt[2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 31 2014 *)
a[n_] := (Binomial[2n - 2, n] Hypergeometric2F1[-n, 2n - 2, 2 - 2n, 2])/(n - 1);
a[0] := 1; a[1] := 5; Table[a[n], {n, 0, 18}] (* Peter Luschny, Dec 10 2020 *)
PROG
(Maxima)
a(n)=if n=0 then 1 else if n=1 then 5 else sum(2^i*binomial(2*(n-1)+i-1, i)*binomial(2*n-i-2, n-i), i, 0, n)/(n-1);
(PARI) my(x='x+O('x^50)); Vec(2 - (2*x)/(1-sqrt(sqrt(1-16*x)+1)/sqrt(2))) \\ G. C. Greubel, Jun 02 2017
CROSSREFS
Cf. A000108.
Sequence in context: A076448 A096310 A236530 * A248661 A176133 A071057
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Oct 31 2014
STATUS
approved