The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249454 E.g.f. exp(x*(sqrt(4*x^2+1)+2*x)). 1
 1, 1, 5, 25, 121, 641, 4861, 44185, 272945, 480961, 19687861, 754778201, 1734823465, -259904463935, 180602875181, 188945735209561, 21689448762721, -167679491870531455, 2951642934531685, 193773398162963638681, 448885053392410841 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..20. FORMULA a(n) = (n-1)!*sum(k = 1..n, (4^(n-k)*binomial(n/2,n-k))/(k-1)!),n>0, a(0)=1. a(n) ~ 2^((3*n-1)/2) * n^(n/2) / exp(n/2-1/4) if n is even, and a(n) ~ (-1)^((n+1)/2) * n^(n-1) * 2^n / exp(n+1/2) if n is odd. - Vaclav Kotesovec, Oct 31 2014 a(2*n+1) = 16^n*hypergeom([-2*n],[3/2-n],-1/4)*Gamma(3/2+n)/Gamma(3/2-n); a(2*n+1) ~ (-1)^(n+1)*2*(4*n/exp(1))^(2*n)/exp(1/2). - Peter Luschny, Oct 31 2014 D-finite with recurrence (-2*n+3)*a(n) +(-8*n^3+60*n^2-78*n-15)*a(n-2) +32*(n-2)*(n-3)*(n-4)*(2*n+1)*a(n-4)=0. - R. J. Mathar, Jul 27 2022 MAPLE A249454 := proc(n) if n = 0 then 1; else (n-1)!*add( 4^(n-k)*binomial(n/2, n-k)/(k-1)! , k=1..n) ; end if; end proc; seq(A249454(n), n=0..40) ; # R. J. Mathar, Jul 27 2022 MATHEMATICA CoefficientList[Series[E^(x*(Sqrt[4*x^2+1]+2*x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 31 2014 *) PROG (Maxima) a(n):=if n=0 then 1 else (n-1)!*sum((4^(n-k)*binomial(n/2, n-k))/(k-1)!, k, 1, n); CROSSREFS Sequence in context: A218989 A078717 A275906 * A250347 A278282 A086093 Adjacent sequences: A249451 A249452 A249453 * A249455 A249456 A249457 KEYWORD sign AUTHOR Vladimir Kruchinin, Oct 31 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 10:47 EST 2023. Contains 367429 sequences. (Running on oeis4.)