login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249248
Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments.
4
1, 1, 3, 1, 7, 3, 1, 12, 22, 3, 1, 18, 69, 40, 3, 1, 25, 159, 241, 61, 3, 1, 33, 310, 883, 582, 85, 3, 1, 42, 543, 2465, 3393, 1155, 112, 3, 1, 52, 882, 5798, 13805, 9786, 2032, 142, 3, 1, 63, 1354, 12110, 44253, 57521, 23368, 3294, 175, 3, 1, 75, 1989
OFFSET
1,3
COMMENTS
The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + 1 + n*x/f(n-1,x), where f(1,x) = 1.
LINKS
EXAMPLE
f(1,x) = 1/1, so that p(1,x) = 1
f(2,x) = (1 + 3 x)/1, so that p(2,x) = 1 + 3 x;
f(3,x) = (1 + 7 x + 3 x^2)/(1 + 3 x), so that p(3,x) = 1 + 7 x + 3 x^2.
First 6 rows of the triangle of coefficients:
1
1 3
1 7 3
1 12 22 3
1 18 69 40 3
1 25 150 241 61 3
MATHEMATICA
z = 14; f[n_, x_] := x + 1 + n*x/f[n - 1, x]; f[1, x_] = 1;
t = Table[Factor[f[n, x]], {n, 1, z}]
u = Numerator[t]
TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (*A249248 array*)
Flatten[CoefficientList[u, x]] (*A249248 sequence*)
PROG
(PARI) rown(n) = if (n==1, 1, x + 1 + n*x/rown(n-1));
tabl(nn) = for (n=1, nn, print(Vecrev(numerator(rown(n))))); \\ Michel Marcus, Oct 30 2014
CROSSREFS
Cf. A249247.
Sequence in context: A133115 A210192 A249755 * A104797 A130330 A050227
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Oct 24 2014
STATUS
approved