Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Oct 30 2014 18:32:20
%S 1,1,3,1,7,3,1,12,22,3,1,18,69,40,3,1,25,159,241,61,3,1,33,310,883,
%T 582,85,3,1,42,543,2465,3393,1155,112,3,1,52,882,5798,13805,9786,2032,
%U 142,3,1,63,1354,12110,44253,57521,23368,3294,175,3,1,75,1989
%N Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments.
%C The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + 1 + n*x/f(n-1,x), where f(1,x) = 1.
%H Clark Kimberling, <a href="/A249248/b249248.txt">Table of n, a(n) for n = 1..5050</a>
%e f(1,x) = 1/1, so that p(1,x) = 1
%e f(2,x) = (1 + 3 x)/1, so that p(2,x) = 1 + 3 x;
%e f(3,x) = (1 + 7 x + 3 x^2)/(1 + 3 x), so that p(3,x) = 1 + 7 x + 3 x^2.
%e First 6 rows of the triangle of coefficients:
%e 1
%e 1 3
%e 1 7 3
%e 1 12 22 3
%e 1 18 69 40 3
%e 1 25 150 241 61 3
%t z = 14; f[n_, x_] := x + 1 + n*x/f[n - 1, x]; f[1, x_] = 1;
%t t = Table[Factor[f[n, x]], {n, 1, z}]
%t u = Numerator[t]
%t TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (*A249248 array*)
%t Flatten[CoefficientList[u, x]] (*A249248 sequence*)
%o (PARI) rown(n) = if (n==1, 1, x + 1 + n*x/rown(n-1));
%o tabl(nn) = for (n=1, nn, print(Vecrev(numerator(rown(n))))); \\ _Michel Marcus_, Oct 30 2014
%Y Cf. A249247.
%K nonn,tabl,easy
%O 1,3
%A _Clark Kimberling_, Oct 24 2014