login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248906
Binary representation of prime power divisors of n: Sum_{p^k | n} 2^(A065515(p^k)-1).
2
0, 1, 2, 5, 8, 3, 16, 37, 66, 9, 128, 7, 256, 17, 10, 549, 1024, 67, 2048, 13, 18, 129, 4096, 39, 8200, 257, 16450, 21, 32768, 11, 65536, 131621, 130, 1025, 24, 71, 262144, 2049, 258, 45, 524288, 19, 1048576, 133, 74, 4097, 2097152, 551, 4194320, 8201
OFFSET
1,3
LINKS
FORMULA
Additive with a(p^k) = Sum_{j=1..k} 2^(A065515(p^j)-1).
a(A051451(k)) = 2^k - 1.
a(n) = Sum_{k=1..A073093(n)} 2^(A095874(A210208(n,k))-2). - Reinhard Zumkeller, Mar 07 2015
EXAMPLE
The prime power divisors of 12 are 2, 3, and 4. These are indices 1, 2, and 3 in the list of prime powers, so a(12) = 2^(1-1) + 2^(2-1) + 2^(3-1) = 7.
PROG
(PARI) al(n) = my(r=vector(n), pps=[p| p <- [1..n], isprimepower(p)], p2); for(k=1, #pps, p2=2^(k-1); forstep(j=pps[k], n, pps[k], r[j]+=p2)); r
(Haskell)
a248906 = sum . map ((2 ^) . subtract 2 . a095874) . tail . a210208_row
-- Reinhard Zumkeller, Mar 07 2015
KEYWORD
nonn
AUTHOR
STATUS
approved