login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Binary representation of prime power divisors of n: Sum_{p^k | n} 2^(A065515(p^k)-1).
2

%I #17 Jul 11 2024 05:28:50

%S 0,1,2,5,8,3,16,37,66,9,128,7,256,17,10,549,1024,67,2048,13,18,129,

%T 4096,39,8200,257,16450,21,32768,11,65536,131621,130,1025,24,71,

%U 262144,2049,258,45,524288,19,1048576,133,74,4097,2097152,551,4194320,8201

%N Binary representation of prime power divisors of n: Sum_{p^k | n} 2^(A065515(p^k)-1).

%H Reinhard Zumkeller, <a href="/A248906/b248906.txt">Table of n, a(n) for n = 1..10000</a>

%F Additive with a(p^k) = Sum_{j=1..k} 2^(A065515(p^j)-1).

%F a(A051451(k)) = 2^k - 1.

%F a(n) = Sum_{k=1..A073093(n)} 2^(A095874(A210208(n,k))-2). - _Reinhard Zumkeller_, Mar 07 2015

%e The prime power divisors of 12 are 2, 3, and 4. These are indices 1, 2, and 3 in the list of prime powers, so a(12) = 2^(1-1) + 2^(2-1) + 2^(3-1) = 7.

%o (PARI) al(n) = my(r=vector(n),pps=[p| p <- [1..n], isprimepower(p)],p2); for(k=1,#pps,p2=2^(k-1);forstep(j=pps[k],n,pps[k],r[j]+=p2));r

%o (Haskell)

%o a248906 = sum . map ((2 ^) . subtract 2 . a095874) . tail . a210208_row

%o -- _Reinhard Zumkeller_, Mar 07 2015

%Y Cf. A246655, A065515, A034729, A000961.

%Y Cf. A095874, A210208, A073093, A000079.

%K nonn

%O 1,3

%A _Franklin T. Adams-Watters_, Mar 06 2015