OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x)^2 * phi(-x^6) / phi(-x^2) in powers of x where phi(), f() are Ramanujan theta functions.
Expansion of phi(-x) * phi(-x^6) / chi(-x^2) in powers of q where phi(), chi() are Ramanujan theta functions.
Expansion of q^(-1/12) * eta(q)^2 * eta(q^4) * eta(q^6)^2 / (eta(q^2)^2 * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [-2, 0, -2, -1, -2, -2, -2, -1, -2, 0, -2, -2, ...].
EXAMPLE
G.f. = 1 - 2*x + x^2 - 2*x^3 + 3*x^4 - 2*x^5 + 2*x^6 + 2*x^8 - 2*x^9 + ...
G.f. = q - 2*q^13 + q^25 - 2*q^37 + 3*q^49 - 2*q^61 + 2*q^73 + 2*q^97 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2 EllipticTheta[ 4, 0, x^6] / EllipticTheta[ 4, 0, x^2], {x, 0, n}];
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] EllipticTheta[ 4, 0, x^6] QPochhammer[ -x^2, x^2], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A) * eta(x^6 + A)^2 / (eta(x^2 + A)^2* eta(x^12 + A)), n))};
(PARI) q='q+O('q^99); Vec(eta(q)^2*eta(q^4)*eta(q^6)^2/(eta(q^2)^2*eta(q^12))) \\ Altug Alkan, Jul 31 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Oct 01 2015
STATUS
approved