login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248859
Decimal expansion of log(sqrt(2*Pi))/e, a constant appearing in the asymptotic expansion of (n!)^(1/n).
1
3, 3, 8, 0, 5, 8, 5, 9, 4, 0, 6, 6, 2, 3, 9, 9, 0, 2, 3, 7, 0, 2, 7, 9, 4, 5, 0, 9, 6, 1, 5, 1, 8, 8, 7, 4, 2, 6, 8, 5, 1, 3, 7, 5, 8, 3, 4, 0, 2, 0, 7, 8, 2, 5, 1, 6, 8, 6, 1, 8, 1, 2, 4, 9, 6, 9, 8, 6, 5, 8, 9, 3, 0, 4, 6, 0, 2, 4, 6, 3, 4, 0, 3, 9, 9, 2, 7, 5, 5, 2, 7, 6, 6, 3, 9, 2, 0, 5, 8, 6, 5, 8, 1, 6, 2
OFFSET
0,1
LINKS
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2021, p. 57.
Shafiqur Rahman and Leonard Giugiuc, Problem 4285, Crux Mathematicorum, Vol. 43, No. 9 (2017), pp. 399 and 401; Solution to Problem 4285, ibid., Vol. 44, No. 9 (2018), p. 395.
FORMULA
Equals lim_{n -> infinity} (n!)^(1/n) - n/e - log(n)/(2*e).
Equals A075700/A001113 = A061444/A019762. - Amiram Eldar, Apr 12 2022
EXAMPLE
0.3380585940662399023702794509615188742685137583402...
MATHEMATICA
RealDigits[Log[Sqrt[2*Pi]]/E, 10, 105] // First
PROG
(PARI) log(2*Pi)/2/exp(1) \\ Charles R Greathouse IV, Apr 20 2016
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Log(2*Pi(R))/(2*Exp(1)); // G. C. Greubel, Oct 07 2018
CROSSREFS
Cf. A001113, A019762, A061444, A075700 (log(sqrt(2*Pi))).
Sequence in context: A232459 A175566 A349425 * A171543 A079073 A165507
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved