The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A248621 Floor of sums of the squares of the non-integer cube roots of n, as partitioned by the integer roots: floor[sum(j from n^3+1 to (n+1)^3-1, j^(2/3))]. 2
 0, 16, 120, 456, 1240, 2760, 5376, 9520, 15696, 24480, 36520, 52536, 73320, 99736, 132720, 173280, 222496, 281520, 351576, 433960, 530040, 641256, 769120, 915216, 1081200, 1268800, 1479816, 1716120, 1979656, 2272440, 2596560, 2954176, 3347520, 3778896, 4250680 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The fractional portion of each sum converges to 1/10. See A248575 for the corresponding sums of the cube root. See A247112 for the cube of the square roots, other references and a conjecture. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA a(n) = floor[sum(j from n^3+1 to (n+1)^3-1, j^(2/3))]. a(n) = 2*n + 5*n^2 + 6*n^3 + 3*n^4. G.f.: -8*x*(x+2)*(2*x+1) / (x-1)^5. - Colin Barker, Dec 30 2014 MATHEMATICA Table[AccountingForm[N[Sum[j^(2/3), {j, n^3 + 1, (n + 1)^3 - 1}], 50]], {n, 0, 50}] Table[2 n + 5 n^2 + 6 n^3 + 3 n^4, {n, 0, 50}] PROG (PARI) a(n) = floor(sum(j=n^3+1, (n+1)^3-1, j^(2/3))); \\ Michel Marcus, Dec 22 2014 (PARI) concat(0, Vec(-8*x*(x+2)*(2*x+1)/(x-1)^5 + O(x^100))) \\ Colin Barker, Dec 30 2014 CROSSREFS Cf. A248575, A247112. Sequence in context: A304469 A316286 A306050 * A190049 A317227 A138571 Adjacent sequences:  A248618 A248619 A248620 * A248622 A248623 A248624 KEYWORD nonn,easy AUTHOR Richard R. Forberg, Dec 02 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 26 16:55 EDT 2022. Contains 354885 sequences. (Running on oeis4.)