login
A138571
Arises in saturation points of a rational polyhedral cone.
0
16, 120, 560, 1796, 4064, 6440, 6956, 4898, 2104, 492, 48
OFFSET
1,1
REFERENCES
Akimichi Takemura and Ruriko Yoshida, Saturation points on faces of a rational polyhedral cone, in Integer Points in Polyhedra -- Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics; Contemporary Mathematics 452, American mathematical Society, 2008, pp.147-161.
EXAMPLE
Table 1 of Takemura and Yoshida: Faces for 2 x 2 x 2 x 2 tables with three 2-marginals and a 3-marginal. The first column represents the dimension of faces, the second column represents the number of faces, the third column represents the number of nowhere saturated faces and the fourth column represents the number of almost saturated faces.
====================================================
Dimension.|.# of faces.|.# of nowhere.|.# of almost|
----------------------------------------------------
...11....|.....48.....|.......0......|.....48.....|
...10....|....492.....|.......0......|....492.....|
....9....|...2104.....|.......0......|...2104.....|
....8....|...4898.....|.......2......|...4896.....|
....7....|...6956.....|......16......|...6940.....|
....6....|...6440.....|......56......|...6384.....|
....5....|...4064.....|.....112......|...3952.....|
....4....|...1796.....|.....140......|...1656.....|
....3....|....560.....|.....112......|....448.....|
....2....|....120.....|......56......|.....64.....|
....1....|.....16.....|......16......|......0.....|
====================================================
CROSSREFS
Sequence in context: A248621 A190049 A317227 * A047641 A010932 A374014
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, May 12 2008
STATUS
approved