login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138574 a(n) = 2*a(n-1) + 2*a(n-2) + 2*a(n-3) - a(n-4); a(0)=0, a(1)=1, a(2)=3, a(3)=9, a(4)=25. 2
0, 1, 3, 9, 25, 73, 211, 609, 1761, 5089, 14707, 42505, 122841, 355017, 1026019, 2965249, 8569729, 24766977, 71577891, 206863945, 597847897, 1727812489, 4993470771, 14431398369, 41707515361, 120536956513, 348358269715, 1006774084809, 2909631106713, 8408989965961 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,2,2,-1).

FORMULA

a(n) = round(w^n*(1 + 1/sqrt(5))/4) where w = (1+r)/(1-r) = 2.89005363826396... and r = sqrt(sqrt(5)-2) = 0.485868271756... .

G.f.: x*( 1 + x + x^2 - x^3 ) / ( 1 - 2*x - 2*x^2 - 2*x^3 + x^4 ). - R. J. Mathar, Jun 29 2013

Lim_{n -> inf} a(n)/a(n-1) = A318605. - A.H.M. Smeets, Sep 12 2018

MAPLE

seq(coeff(series((x*(1+x+x^2-x^3))/(1-2*x-2*x^2-2*x^3+x^4), x, n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Sep 12 2018

MATHEMATICA

LinearRecurrence[{2, 2, 2, -1}, {0, 1, 3, 9, 25}, 50] (* G. C. Greubel, Aug 08 2017 *)

CoefficientList[Series[x*( 1+x+x^2-x^3 )/(1-2*x-2*x^2-2*x^3+x^4), {x, 0, 20}], x] (* Stefano Spezia, Sep 12 2018 *)

PROG

(PARI) x='x+O('x^50); concat([0], Vec(x*(1 +x +x^2 -x^3)/(1 -2*x -2*x^2 -2*x^3 +x^4))) \\ G. C. Greubel, Aug 08 2017

(MAGMA) I:=[0, 1, 3, 9, 25]; [n le 5 select I[n] else 2*Self(n-1)+2*Self(n-2)+2*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Sep 14 2018

CROSSREFS

Cf. A071101.

Sequence in context: A309104 A211282 A211298 * A101499 A004665 A196431

Adjacent sequences:  A138571 A138572 A138573 * A138575 A138576 A138577

KEYWORD

nonn

AUTHOR

Benoit Cloitre, May 12 2008

EXTENSIONS

Terms corrected by Colin Barker, Jun 28 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 1 07:30 EDT 2022. Contains 354952 sequences. (Running on oeis4.)