The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A248600 G.f.: Sum_{n>=0} R_n(x+x*y) * x^(2*n)*y^n / (1-x-x*y)^(4*n+1) = Sum_{n>=0} Sum_{k=0..n} C(n,k)^4 * x^n*y^k, where R_n(x+x*y) equals the n-th row polynomial R_n(z) = Sum_{k=0..2*n} T(n,k)*z^k at z = x+x*y. 1
1, 14, 8, 2, 786, 1056, 576, 96, 6, 61340, 131760, 117900, 48320, 9540, 720, 20, 5562130, 16481920, 20917120, 13847680, 5118400, 1025920, 105280, 4480, 70, 549676764, 2079579600, 3444581700, 3165926400, 1755532800, 598123008, 123656400, 14716800, 926100, 25200, 252, 57440496036 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
Leftmost border equals A050983, de Bruijn's S(4,n):
T(n,0) = Sum_{k=0..2*n} (-1)^(n+k) * C(2*n,k)^4.
Rightmost border equals A000984, the central binomial coefficients:
T(n,2*n) = Sum_{k=0..2*n} (-1)^(n+k)* C(2*n,k)^2 = (2*n)!/(n!)^2.
Row sums equal A008977(n) = (4*n)!/(n!)^4.
Sum_{k=0..n} (-1)^k * T(n,k) = A002897(n) = C(2*n,n)^3.
EXAMPLE
Triangle begins:
[1],
[14, 8, 2],
[786, 1056, 576, 96, 6],
[61340, 131760, 117900, 48320, 9540, 720, 20],
[5562130, 16481920, 20917120, 13847680, 5118400, 1025920, 105280, 4480, 70],
[549676764, 2079579600, 3444581700, 3165926400, 1755532800, 598123008, 123656400, 14716800, 926100, 25200, 252],
[57440496036, 264565490112, 542687590368, 640299696960, 477284304420, 233110386432, 75243589344, 15835792896, 2103157980, 165802560, 7051968, 133056, 924],
[6242164112184, 33895475918304, 83073660613944, 119912994225024, 112698387745944, 72172565713248, 32111980788888, 9951304416768, 2124873478728, 305035899168, 28270554312, 1584815232, 48600552, 672672, 3432],
[698300344311570, 4368053451041280, 12465205610457600, 21305587665922560, 24216302627637120, 19255941998092800, 10989839486545920, 4550117424652800, 1366687981264320, 295074717949440, 44954858108160, 4691645038080, 320878958400, 13445752320, 311351040, 3294720, 12870], ...
where this triangle forms the coefficients in the series
B(x,y) = 1/(1-x-x*y) +
(14 + 8*(x+x*y) + 2*(x+x*y)^2) * x^2*y/(1-x-x*y)^5 +
(786 + 1056*(x+x*y) + 576*(x+x*y)^2 + 96*(x+x*y)^3 + 6*(x+x*y)^4) * x^4*y^2/(1-x-x*y)^9 +
(61340 + 131760*(x+x*y) + 117900*(x+x*y)^2 + 48320*(x+x*y)^3 + 9540*(x+x*y)^4 + 720*(x+x*y)^5 + 20*(x+x*y)^6) * x^6*y^3/(1-x-x*y)^13 +...
such that the sum may be expressed using binomial coefficients C(n,k)^4 like so:
B(x,y) = 1 +
x*(1 + y) +
x^2*(1 + 2^4*y + y^2) +
x^3*(1 + 3^4*y + 3^4*y^2 + y^3) +
x^4*(1 + 4^4*y + 6^4*y^2 + 4^4*y^3 + y^4) +
x^5*(1 + 5^4*y + 10^4*y^2 + 10^4*y^3 + 5^4*y^4 + y^5) +
x^6*(1 + 6^4*y + 15^4*y^2 + 20^4*y^3 + 15^4*y^4 + 6^4*y^5 + y^6) +...
The central terms of the rows begin:
[1, 8, 576, 48320, 5118400, 598123008, 75243589344, 9951304416768, 1366687981264320, ...].
CROSSREFS
Sequence in context: A275337 A337420 A154037 * A240245 A119871 A245175
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Oct 11 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 03:29 EDT 2024. Contains 373468 sequences. (Running on oeis4.)