login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248539
Number of length 2+3 0..n arrays with every four consecutive terms having the sum of some three elements equal to three times the fourth
1
2, 15, 52, 113, 246, 427, 704, 1113, 1654, 2279, 3072, 4045, 5210, 6555, 8116, 9953, 12054, 14383, 16976, 19929, 23194, 26735, 30636, 34993, 39686, 44751, 50212, 56201, 62646, 69451, 76712, 84609, 93010, 101879, 111252, 121321, 131942, 143103, 154840
OFFSET
1,1
COMMENTS
Row 2 of A248537
LINKS
FORMULA
Empirical: a(n) = a(n-1) -a(n-2) +a(n-4) +a(n-7) +a(n-8) -a(n-9) +a(n-10) -a(n-12) -a(n-13) -a(n-15) -a(n-16) +a(n-18) -a(n-19) +a(n-20) +a(n-21) +a(n-24) -a(n-26) +a(n-27) -a(n-28)
Empirical also a cubic polynomial plus a linear quasipolynomial with period 360, the first 12 being:
Empirical for n mod 360 = 0: a(n) = (11/4)*n^3 - (113/20)*n^2 + (97/10)*n + 1
Empirical for n mod 360 = 1: a(n) = (11/4)*n^3 - (113/20)*n^2 + (209/20)*n - (111/20)
Empirical for n mod 360 = 2: a(n) = (11/4)*n^3 - (113/20)*n^2 + (97/10)*n - (19/5)
Empirical for n mod 360 = 3: a(n) = (11/4)*n^3 - (113/20)*n^2 + (149/20)*n + (25/4)
Empirical for n mod 360 = 4: a(n) = (11/4)*n^3 - (113/20)*n^2 + (97/10)*n - (57/5)
Empirical for n mod 360 = 5: a(n) = (11/4)*n^3 - (113/20)*n^2 + (209/20)*n - (35/4)
Empirical for n mod 360 = 6: a(n) = (11/4)*n^3 - (113/20)*n^2 + (97/10)*n - (109/5)
Empirical for n mod 360 = 7: a(n) = (11/4)*n^3 - (113/20)*n^2 + (149/20)*n - (291/20)
Empirical for n mod 360 = 8: a(n) = (11/4)*n^3 - (113/20)*n^2 + (97/10)*n - 11
Empirical for n mod 360 = 9: a(n) = (11/4)*n^3 - (113/20)*n^2 + (209/20)*n + (257/20)
Empirical for n mod 360 = 10: a(n) = (11/4)*n^3 - (113/20)*n^2 + (97/10)*n - 3
Empirical for n mod 360 = 11: a(n) = (11/4)*n^3 - (113/20)*n^2 + (149/20)*n + (269/20)
EXAMPLE
Some solutions for n=6
..0....3....5....2....2....2....5....0....0....6....6....1....2....4....6....0
..1....5....6....3....2....2....4....6....3....1....0....5....3....5....2....6
..2....4....5....1....4....3....3....6....2....4....0....6....6....5....4....3
..1....0....4....6....0....5....4....4....3....5....2....4....1....6....4....3
..4....3....1....2....2....2....5....0....0....6....6....5....2....4....6....0
CROSSREFS
Sequence in context: A066562 A073877 A248538 * A248540 A007972 A248541
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 08 2014
STATUS
approved