login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of length 2+3 0..n arrays with every four consecutive terms having the sum of some three elements equal to three times the fourth
1

%I #6 Dec 12 2014 20:59:13

%S 2,15,52,113,246,427,704,1113,1654,2279,3072,4045,5210,6555,8116,9953,

%T 12054,14383,16976,19929,23194,26735,30636,34993,39686,44751,50212,

%U 56201,62646,69451,76712,84609,93010,101879,111252,121321,131942,143103,154840

%N Number of length 2+3 0..n arrays with every four consecutive terms having the sum of some three elements equal to three times the fourth

%C Row 2 of A248537

%H R. H. Hardin, <a href="/A248539/b248539.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) -a(n-2) +a(n-4) +a(n-7) +a(n-8) -a(n-9) +a(n-10) -a(n-12) -a(n-13) -a(n-15) -a(n-16) +a(n-18) -a(n-19) +a(n-20) +a(n-21) +a(n-24) -a(n-26) +a(n-27) -a(n-28)

%F Empirical also a cubic polynomial plus a linear quasipolynomial with period 360, the first 12 being:

%F Empirical for n mod 360 = 0: a(n) = (11/4)*n^3 - (113/20)*n^2 + (97/10)*n + 1

%F Empirical for n mod 360 = 1: a(n) = (11/4)*n^3 - (113/20)*n^2 + (209/20)*n - (111/20)

%F Empirical for n mod 360 = 2: a(n) = (11/4)*n^3 - (113/20)*n^2 + (97/10)*n - (19/5)

%F Empirical for n mod 360 = 3: a(n) = (11/4)*n^3 - (113/20)*n^2 + (149/20)*n + (25/4)

%F Empirical for n mod 360 = 4: a(n) = (11/4)*n^3 - (113/20)*n^2 + (97/10)*n - (57/5)

%F Empirical for n mod 360 = 5: a(n) = (11/4)*n^3 - (113/20)*n^2 + (209/20)*n - (35/4)

%F Empirical for n mod 360 = 6: a(n) = (11/4)*n^3 - (113/20)*n^2 + (97/10)*n - (109/5)

%F Empirical for n mod 360 = 7: a(n) = (11/4)*n^3 - (113/20)*n^2 + (149/20)*n - (291/20)

%F Empirical for n mod 360 = 8: a(n) = (11/4)*n^3 - (113/20)*n^2 + (97/10)*n - 11

%F Empirical for n mod 360 = 9: a(n) = (11/4)*n^3 - (113/20)*n^2 + (209/20)*n + (257/20)

%F Empirical for n mod 360 = 10: a(n) = (11/4)*n^3 - (113/20)*n^2 + (97/10)*n - 3

%F Empirical for n mod 360 = 11: a(n) = (11/4)*n^3 - (113/20)*n^2 + (149/20)*n + (269/20)

%e Some solutions for n=6

%e ..0....3....5....2....2....2....5....0....0....6....6....1....2....4....6....0

%e ..1....5....6....3....2....2....4....6....3....1....0....5....3....5....2....6

%e ..2....4....5....1....4....3....3....6....2....4....0....6....6....5....4....3

%e ..1....0....4....6....0....5....4....4....3....5....2....4....1....6....4....3

%e ..4....3....1....2....2....2....5....0....0....6....6....5....2....4....6....0

%K nonn

%O 1,1

%A _R. H. Hardin_, Oct 08 2014