login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248538
Number of length 1+3 0..n arrays with every four consecutive terms having the sum of some three elements equal to three times the fourth.
1
2, 15, 52, 101, 198, 331, 512, 753, 1066, 1439, 1908, 2461, 3110, 3867, 4744, 5729, 6858, 8119, 9524, 11085, 12814, 14699, 16776, 19033, 21482, 24135, 27004, 30077, 33390, 36931, 40712, 44745, 49042, 53591, 58428, 63541, 68942, 74643, 80656, 86969
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) - a(n-3) - a(n-4) + 2*a(n-6) - a(n-7).
Empirical for n mod 6 = 0: a(n) = (4/3)*n^3 + n^2 + n + 1.
Empirical for n mod 6 = 1: a(n) = (4/3)*n^3 + n^2 + n - (4/3).
Empirical for n mod 6 = 2: a(n) = (4/3)*n^3 + n^2 + n - (5/3).
Empirical for n mod 6 = 3: a(n) = (4/3)*n^3 + n^2 + n + 4.
Empirical for n mod 6 = 4: a(n) = (4/3)*n^3 + n^2 + n - (13/3).
Empirical for n mod 6 = 5: a(n) = (4/3)*n^3 + n^2 + n + (4/3).
Empirical g.f.: x*(2 + 11*x + 22*x^2 - x^3 + 13*x^4 + 2*x^5 - x^6) / ((1 - x)^4*(1 + x)*(1 + x + x^2)). - Colin Barker, Nov 08 2018
EXAMPLE
Some solutions for n=6:
..2....0....4....2....0....5....2....3....3....2....5....1....1....5....2....0
..3....2....6....4....3....6....0....5....3....4....2....6....5....1....5....2
..4....4....2....3....4....5....1....1....2....4....0....4....6....0....2....1
..3....2....4....3....5....4....5....3....4....6....1....5....4....2....3....1
CROSSREFS
Row 1 of A248537.
Sequence in context: A154565 A066562 A073877 * A248539 A248540 A007972
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 08 2014
STATUS
approved