login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A248070 Number of length 2+5 0..n arrays with some disjoint triples in each consecutive six terms having the same sum 1
32, 513, 3364, 15125, 48316, 131677, 299968, 625269, 1174080, 2085341, 3462212, 5539433, 8458164, 12578465, 18080936, 25484457, 35000808, 47350769, 62767700, 82210901, 105929332, 135165573, 170162104, 212500725, 262397536, 321818557 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Row 2 of A248068

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..55

FORMULA

Empirical: a(n) = 3*a(n-2) +2*a(n-3) -2*a(n-4) -6*a(n-5) -3*a(n-6) +4*a(n-7) +6*a(n-8) +4*a(n-9) -3*a(n-10) -6*a(n-11) -2*a(n-12) +2*a(n-13) +3*a(n-14) -a(n-16)

Empirical for n mod 12 = 0: a(n) = (1043/32)*n^5 - (5165/32)*n^4 + (4450/9)*n^3 - (13225/24)*n^2 + (467/6)*n + 1

Empirical for n mod 12 = 1: a(n) = (1043/32)*n^5 - (5165/32)*n^4 + (68545/144)*n^3 - (21725/48)*n^2 - (25423/96)*n + (115843/288)

Empirical for n mod 12 = 2: a(n) = (1043/32)*n^5 - (5165/32)*n^4 + (4450/9)*n^3 - (13225/24)*n^2 + (49/2)*n + (2269/9)

Empirical for n mod 12 = 3: a(n) = (1043/32)*n^5 - (5165/32)*n^4 + (68545/144)*n^3 - (21725/48)*n^2 - (25423/96)*n + (17067/32)

Empirical for n mod 12 = 4: a(n) = (1043/32)*n^5 - (5165/32)*n^4 + (4450/9)*n^3 - (13225/24)*n^2 + (467/6)*n - (631/9)

Empirical for n mod 12 = 5: a(n) = (1043/32)*n^5 - (5165/32)*n^4 + (68545/144)*n^3 - (21725/48)*n^2 - (10181/32)*n + (214403/288)

Empirical for n mod 12 = 6: a(n) = (1043/32)*n^5 - (5165/32)*n^4 + (4450/9)*n^3 - (13225/24)*n^2 + (467/6)*n - 19

Empirical for n mod 12 = 7: a(n) = (1043/32)*n^5 - (5165/32)*n^4 + (68545/144)*n^3 - (21725/48)*n^2 - (25423/96)*n + (133123/288)

Empirical for n mod 12 = 8: a(n) = (1043/32)*n^5 - (5165/32)*n^4 + (4450/9)*n^3 - (13225/24)*n^2 + (49/2)*n + (2449/9)

Empirical for n mod 12 = 9: a(n) = (1043/32)*n^5 - (5165/32)*n^4 + (68545/144)*n^3 - (21725/48)*n^2 - (25423/96)*n + (15147/32)

Empirical for n mod 12 = 10: a(n) = (1043/32)*n^5 - (5165/32)*n^4 + (4450/9)*n^3 - (13225/24)*n^2 + (467/6)*n - (811/9)

Empirical for n mod 12 = 11: a(n) = (1043/32)*n^5 - (5165/32)*n^4 + (68545/144)*n^3 - (21725/48)*n^2 - (10181/32)*n + (231683/288)

EXAMPLE

Some solutions for n=6

..4....0....4....4....4....3....0....0....4....0....3....4....2....4....4....1

..3....1....5....2....4....2....6....3....3....1....1....3....2....4....5....3

..5....6....4....1....5....4....3....3....4....0....1....0....2....3....3....4

..3....4....0....2....3....4....0....5....2....0....5....6....1....2....2....0

..4....2....2....1....5....5....5....5....4....4....2....5....2....6....4....2

..3....5....5....0....3....2....4....4....3....3....4....6....3....1....4....0

..2....4....6....4....6....5....0....0....0....2....3....2....0....0....2....1

CROSSREFS

Sequence in context: A035711 A035477 A109384 * A146124 A125489 A084486

Adjacent sequences:  A248067 A248068 A248069 * A248071 A248072 A248073

KEYWORD

nonn

AUTHOR

R. H. Hardin, Sep 30 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 26 22:19 EDT 2021. Contains 348269 sequences. (Running on oeis4.)