login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248069
Number of length 1+5 0..n arrays with some disjoint triples in each consecutive six terms having the same sum.
1
32, 333, 1804, 6545, 18636, 44677, 94568, 182049, 325480, 548381, 880212, 1356913, 2021684, 2925525, 4128016, 5697857, 7713648, 10264429, 13450460, 17383761, 22188892, 28003493, 34979064, 43281505, 53091896, 64607037, 78040228, 93621809
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) - 9*a(n-2) + 5*a(n-3) + 5*a(n-4) - 9*a(n-5) + 5*a(n-6) - a(n-7).
Empirical for n mod 2 = 0: a(n) = (11/2)*n^5 - (5/2)*n^4 + (45/2)*n^3 + 10*n^2 - 12*n + 1.
Empirical for n mod 2 = 1: a(n) = (11/2)*n^5 - (5/2)*n^4 + (45/2)*n^3 + 10*n^2 - 12*n + (17/2).
Empirical g.f.: x*(32 + 173*x + 427*x^2 + 362*x^3 + 322*x^4 + 5*x^5 - x^6) / ((1 - x)^6*(1 + x)). - Colin Barker, Nov 08 2018
EXAMPLE
Some solutions for n=6:
..6....5....0....5....0....2....6....1....2....3....5....4....1....5....2....2
..1....1....4....6....1....6....6....5....1....2....3....2....6....6....3....1
..4....0....3....4....0....3....3....5....2....1....0....4....5....3....6....1
..6....5....2....5....5....0....3....1....5....6....1....6....2....2....5....6
..3....1....3....4....3....4....1....4....4....2....2....5....6....2....4....5
..6....0....4....6....1....3....1....4....2....4....5....1....6....0....0....3
CROSSREFS
Row 1 of A248068.
Sequence in context: A223017 A293288 A248068 * A145402 A009797 A240293
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 30 2014
STATUS
approved