OFFSET
1,1
COMMENTS
Table starts
.32...333...1804.....6545.....18636......44677......94568......182049
.32...513...3364....15125.....48316.....131677.....299968......625269
.32...793...6364....35529....128556.....398737.....983784.....2223873
.32..1221..12124....83925....345760....1220617....3273988.....8029409
.32..1861..23164...198333....933004....3747537...10950616....29138097
.32..2793..44284...467723...2517256...11500157...36646756...105799459
.32..4113..84604..1099415...6782344...35238445..122502768...383781973
.32..6753.161824..2676011..18295612..109996209..409950004..1407188901
.32.10945.309724..6485603..49388668..342828243.1372989004..5155470523
.32.17457.592924.15656957.133375284.1066829297.4600574912.18875673047
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..565
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +20*a(n-6) -20*a(n-7) -64*a(n-12) +64*a(n-13)
k=3: [order 16]
Empirical for row n:
n=1: a(n) = 5*a(n-1) -9*a(n-2) +5*a(n-3) +5*a(n-4) -9*a(n-5) +5*a(n-6) -a(n-7); also a degree 5 polynomial plus a quasipolynomial of degree zero with period 2
n=2: [order 16; also a degree 5 polynomial plus a cubic quasipolynomial with period 12]
EXAMPLE
Some solutions for n=4 k=4
..2....2....0....3....2....3....1....3....2....4....0....2....3....0....0....1
..4....2....1....0....4....3....1....3....0....2....3....4....1....2....4....3
..2....3....1....0....1....2....4....3....3....2....1....1....2....2....2....0
..2....1....3....3....3....4....2....3....4....3....2....3....3....2....0....2
..3....3....3....4....3....2....2....1....1....2....4....4....4....3....1....4
..3....1....2....4....1....2....2....1....0....3....0....2....1....3....1....2
..0....0....0....3....2....1....1....3....2....2....4....2....1....2....0....3
..0....4....1....2....4....1....3....3....0....0....1....4....1....0....0....1
..2....3....1....4....1....4....4....3....1....0....3....1....2....4....0....4
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Sep 30 2014
STATUS
approved