login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A248030 Least positive integer m such that m + n divides sigma(m)*phi(n), where sigma(.) and phi(.) are given by A000203 and A000010. 3
2, 12, 4, 2, 3, 6, 2, 10, 3, 2, 21, 8, 3, 22, 13, 8, 9, 6, 8, 12, 3, 8, 10, 4, 5, 10, 21, 8, 20, 26, 4, 8, 7, 14, 13, 12, 8, 4, 33, 8, 23, 6, 20, 12, 3, 16, 22, 72, 7, 10, 13, 4, 27, 42, 5, 24, 15, 26, 57, 18, 11, 38, 27, 20, 31, 4, 21, 36, 19, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Conjecture: a(n) < 2*n for any n > 2.
Numbers n such that a(n) > n: 1, 2, 3, 8, 11, 14, 48, 227, 908, 4478, ... The next number, if it exists, is greater than 10^5. - Derek Orr, Sep 29 2014
LINKS
EXAMPLE
a(2) = 12 since 12 + 2 = 14 divides sigma(12)*phi(2) = 28.
MATHEMATICA
Do[m=1; Label[aa]; If[Mod[DivisorSigma[1, m]*EulerPhi[n], m+n]==0, Print[n, " ", m]; Goto[bb]]; m= m+1; Goto[aa]; Label[bb]; Continue, {n, 1, 70}]
lpim[n_]:=Module[{m=1, ephn=EulerPhi[n]}, While[Mod[ephn*DivisorSigma[1, m], m+n]!=0, m++]; m]; Array[lpim, 70] (* Harvey P. Dale, Feb 14 2024 *)
PROG
(PARI)
a(n)=m=1; while((eulerphi(n)*sigma(m))%(m+n), m++); m
vector(100, n, a(n)) \\ Derek Orr, Sep 29 2014
CROSSREFS
Sequence in context: A317206 A164869 A347408 * A082292 A248588 A332350
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Sep 29 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 03:51 EDT 2024. Contains 375995 sequences. (Running on oeis4.)