The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.


(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A247690 Absolute discriminants of complex quadratic fields with 3-class group of type (3,3) and 3-principalization type (4224). 2
12131, 19187, 20276, 20568, 24340, 26760, 31639, 31999, 32968, 34507, 35367, 41583, 41671, 43307, 57079, 64196, 73731, 85796, 87720, 93823, 95691 (list; graph; refs; listen; history; text; internal format)
These fields are characterized either by their 3-principalization type (transfer kernel type, TKT) (4224), D.5, or equivalently by their transfer target type (TTT) [(3,3,3)^2, (3,9)^2] (called IPAD by Boston, Bush, Hajir). The latter is used in the MAGMA PROG, which essentially constitutes the principalization algorithm via class group structure. The TKT (4224) has two fixed points and is not a permutation.
For all these discriminants, the 3-tower group is the metabelian Schur sigma-group SmallGroup(243, 7) and the Hilbert 3-class field tower terminates at the second stage.
12131 has been discovered by Heider and Schmithals.
F.-P. Heider, B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. reine angew. Math. 336 (1982), 1 - 25.
D. C. Mayer, "The distribution of second p-class groups on coclass graphs", J. Théor. Nombres Bordeaux 25 (2) (2013), 401-456.
N. Boston, M. R. Bush, F. Hajir, Heuristics for p-class towers of imaginary quadratic fields, Math. Ann. (2013), Preprint: arXiv:1111.4679v1 [math.NT], 2011.
D. C. Mayer, Principalization algorithm via class group structure, J. Théor. Nombres Bordeaux (2014), Preprint: arXiv:1403.3839v1 [math.NT], 2014.
for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C, mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then E := AbelianExtension(mC); sS := Subgroups(C: Quot := [3]); sA := [AbelianExtension(Inverse(mQ)*mC) where Q, mQ := quo<C|x`subgroup>: x in sS]; sN := [NumberField(x): x in sA]; sF := [AbsoluteField(x): x in sN]; sM := [MaximalOrder(x): x in sF]; sM := [OptimizedRepresentation(x): x in sF]; sA := [NumberField(DefiningPolynomial(x)): x in sM]; sO := [Simplify(LLL(MaximalOrder(x))): x in sA]; delete sA, sN, sF, sM; g := true; e := 0; for j in [1..#sO] do CO := ClassGroup(sO[j]); if (3 eq Valuation(#CO, 3)) then if ([3, 3, 3] eq pPrimaryInvariants(CO, 3)) then e := e+1; end if; else g := false; end if; end for; if (true eq g) and (2 eq e) then d, ", "; end if; end if; end if; end for;
Cf. A242862, A242863, A242864 (supersequences), and A247689, A242873 (disjoint sequences).
Sequence in context: A247403 A262635 A186564 * A126847 A018235 A250837

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 03:10 EDT 2024. Contains 373492 sequences. (Running on oeis4.)