Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 08 2022 08:46:09
%S 12131,19187,20276,20568,24340,26760,31639,31999,32968,34507,35367,
%T 41583,41671,43307,57079,64196,73731,85796,87720,93823,95691
%N Absolute discriminants of complex quadratic fields with 3-class group of type (3,3) and 3-principalization type (4224).
%C These fields are characterized either by their 3-principalization type (transfer kernel type, TKT) (4224), D.5, or equivalently by their transfer target type (TTT) [(3,3,3)^2, (3,9)^2] (called IPAD by Boston, Bush, Hajir). The latter is used in the MAGMA PROG, which essentially constitutes the principalization algorithm via class group structure. The TKT (4224) has two fixed points and is not a permutation.
%C For all these discriminants, the 3-tower group is the metabelian Schur sigma-group SmallGroup(243, 7) and the Hilbert 3-class field tower terminates at the second stage.
%C 12131 has been discovered by Heider and Schmithals.
%D F.-P. Heider, B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. reine angew. Math. 336 (1982), 1 - 25.
%D D. C. Mayer, "The distribution of second p-class groups on coclass graphs", J. Théor. Nombres Bordeaux 25 (2) (2013), 401-456.
%H N. Boston, M. R. Bush, F. Hajir, <a href="http://arxiv.org/abs/1111.4679">Heuristics for p-class towers of imaginary quadratic fields</a>, Math. Ann. (2013), Preprint: arXiv:1111.4679v1 [math.NT], 2011.
%H D. C. Mayer, <a href="http://arxiv.org/abs/1403.3839">Principalization algorithm via class group structure</a>, J. Théor. Nombres Bordeaux (2014), Preprint: arXiv:1403.3839v1 [math.NT], 2014.
%o (Magma)
%o for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C, mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then E := AbelianExtension(mC); sS := Subgroups(C: Quot := [3]); sA := [AbelianExtension(Inverse(mQ)*mC) where Q, mQ := quo<C|x`subgroup>: x in sS]; sN := [NumberField(x): x in sA]; sF := [AbsoluteField(x): x in sN]; sM := [MaximalOrder(x): x in sF]; sM := [OptimizedRepresentation(x): x in sF]; sA := [NumberField(DefiningPolynomial(x)): x in sM]; sO := [Simplify(LLL(MaximalOrder(x))): x in sA]; delete sA, sN, sF, sM; g := true; e := 0; for j in [1..#sO] do CO := ClassGroup(sO[j]); if (3 eq Valuation(#CO, 3)) then if ([3, 3, 3] eq pPrimaryInvariants(CO, 3)) then e := e+1; end if; else g := false; end if; end for; if (true eq g) and (2 eq e) then d, ", "; end if; end if; end if; end for;
%Y Cf. A242862, A242863, A242864 (supersequences), and A247689, A242873 (disjoint sequences).
%K hard,more,nonn
%O 1,1
%A _Daniel Constantin Mayer_, Sep 23 2014