login
A247587
Number of obtuse triangles with integer sides at most n.
5
0, 0, 1, 2, 4, 8, 13, 20, 30, 42, 57, 74, 95, 120, 149, 182, 219, 261, 309, 362, 420, 485, 556, 632, 715, 806, 906, 1012, 1125, 1247, 1377, 1517, 1666, 1824, 1993, 2170, 2358, 2555, 2765, 2986
OFFSET
1,4
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Vladimir Letsko, Mathematical Marathon, problem 192 (in Russian).
EXAMPLE
a(4) = 2 because there are 2 obtuse triangles with integer sides less than or equal to 4: (2,2,3); (2,3,4).
MAPLE
tr_o:=proc(n) local a, b, c, t, d; t:=0:
for a to n do
for b from a to n do
for c from b to min(a+b-1, n) do
d:=a^2+b^2-c^2:
if d<0 then t:=t+1 fi
od od od;
[n, t]; end;
PROG
(PARI) a(n)=sum(a=2, n-1, sum(b=a, n-1, max(0, min(n, a+b-1)-sqrtint(a^2+b^2)))) \\ Charles R Greathouse IV, Sep 20 2014
(PARI) obtuse(n)=sum(a=2, n-1, max(0, sqrtint(n^2-1-a^2)-max(a, n-a+1)+1))
s=0; vector(100, n, s+=obtuse(n)) \\ Charles R Greathouse IV, Sep 20 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Letsko, Sep 20 2014
STATUS
approved