login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247522
Numbers k such that d(r,k) = 1 and d(s,k) = 1, where d(x,k) = k-th binary digit of x, r = {golden ratio}, s = {(golden ratio)/2}, and { } = fractional part.
4
1, 5, 6, 7, 12, 15, 16, 19, 20, 21, 25, 28, 29, 35, 36, 37, 38, 39, 40, 51, 52, 53, 54, 65, 66, 67, 68, 72, 73, 77, 78, 82, 91, 101, 102, 106, 107, 110, 113, 114, 124, 151, 152, 155, 160, 161, 162, 163, 164, 168, 169, 179, 180, 193, 194, 195, 196, 197, 203
OFFSET
1,2
COMMENTS
Every positive integer lies in exactly one of these: A247519, A247520, A247521.
LINKS
EXAMPLE
r has binary digits 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, ...
s has binary digits 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, ...
so that a(1) = 1 and a(2) = 5.
MATHEMATICA
z = 400; r1 = GoldenRatio; r = FractionalPart[r1]; s = FractionalPart[r1/2];
u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
Flatten[Position[t1, 1]] (* A247519 *)
Flatten[Position[t2, 1]] (* A247520 *)
Flatten[Position[t3, 1]] (* A247521 *)
Flatten[Position[t4, 1]] (* A247522 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Sep 19 2014
STATUS
approved