login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247392
Decimal expansion of 'v', a parking constant associated with the asymptotic variance of the number of cars that can be parked in a given interval.
2
0, 3, 8, 1, 5, 6, 3, 9, 9, 1, 9, 0, 4, 2, 6, 5, 0, 5, 3, 2, 9, 1, 0, 4, 4, 9, 8, 2, 2, 5, 3
OFFSET
0,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.3 Rényi Parking Constant, p. 279.
LINKS
FORMULA
beta(x) = exp(-2*(Gamma(0, x) + log(x) + EulerGamma)), where Gamma(0,x) is the incomplete Gamma function,
m = A050996 = integral_{0..infinity} beta(x) dx,
alpha(x) = m - integral_{0..x} beta(t) dt,
v = 4*integral_{0..infinity} (((1 - exp(-x))*alpha(x))/(x*exp(x)) - ((x + exp(-x) - 1)*alpha(x)^2)/((beta(x)*x^2)* exp(2*x)) dx.
EXAMPLE
0.0381563991904265053291044982253...
MATHEMATICA
digits = 30; beta[x_] := Exp[-2*(Gamma[0, x] + Log[x] + EulerGamma)]; m = NIntegrate[beta[x], {x, 0, Infinity}, WorkingPrecision -> digits+5]; alpha[x_?NumericQ] := m - NIntegrate[beta[t], {t, 0, x}, WorkingPrecision -> digits+5]; v = 4*NIntegrate[((1 - Exp[-x])*alpha[x])/(x*Exp[x]) - ((x + Exp[-x] - 1)*alpha[x]^2)/((beta[x]*x^2)* Exp[2*x]), {x, 0, Infinity}, WorkingPrecision -> digits+5] - m; Join[{0}, First[RealDigits[v, 10, digits]]]
CROSSREFS
Cf. A050996.
Sequence in context: A238169 A341414 A086245 * A219995 A021266 A054399
KEYWORD
nonn,cons,more
AUTHOR
STATUS
approved