Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Sep 16 2014 03:50:10
%S 0,3,8,1,5,6,3,9,9,1,9,0,4,2,6,5,0,5,3,2,9,1,0,4,4,9,8,2,2,5,3
%N Decimal expansion of 'v', a parking constant associated with the asymptotic variance of the number of cars that can be parked in a given interval.
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.3 Rényi Parking Constant, p. 279.
%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/RenyisParkingConstants.html">Rényi's Parking Constants</a>
%F beta(x) = exp(-2*(Gamma(0, x) + log(x) + EulerGamma)), where Gamma(0,x) is the incomplete Gamma function,
%F m = A050996 = integral_{0..infinity} beta(x) dx,
%F alpha(x) = m - integral_{0..x} beta(t) dt,
%F v = 4*integral_{0..infinity} (((1 - exp(-x))*alpha(x))/(x*exp(x)) - ((x + exp(-x) - 1)*alpha(x)^2)/((beta(x)*x^2)* exp(2*x)) dx.
%e 0.0381563991904265053291044982253...
%t digits = 30; beta[x_] := Exp[-2*(Gamma[0, x] + Log[x] + EulerGamma)]; m = NIntegrate[beta[x], {x, 0, Infinity}, WorkingPrecision -> digits+5]; alpha[x_?NumericQ] := m - NIntegrate[beta[t], {t, 0, x}, WorkingPrecision -> digits+5]; v = 4*NIntegrate[((1 - Exp[-x])*alpha[x])/(x*Exp[x]) - ((x + Exp[-x] - 1)*alpha[x]^2)/((beta[x]*x^2)* Exp[2*x]), {x, 0, Infinity}, WorkingPrecision -> digits+5] - m; Join[{0}, First[RealDigits[v, 10, digits]]]
%Y Cf. A050996.
%K nonn,cons,more
%O 0,2
%A _Jean-François Alcover_, Sep 16 2014