login
A247246
Differences of consecutive Achilles numbers.
2
36, 92, 88, 104, 40, 68, 148, 27, 125, 64, 104, 4, 153, 27, 171, 29, 20, 196, 232, 144, 56, 312, 280, 108, 188, 199, 113, 67, 189, 72, 344, 16, 112, 232, 268, 63, 45, 392, 292, 32, 76, 8, 80, 587, 50, 147, 456, 184, 288, 488, 115, 772, 137, 36, 40, 212, 248
OFFSET
1,1
COMMENTS
29 is the first prime in this sequence, and it equals 1352 - 1323. Clearly, if the difference is prime, then these two Achilles numbers must be relatively prime, so primes appear in this sequence rarely. However, are there infinitely many n such that a(n) is prime?
The number 1 can also appear in this sequence, because it equals 5425069448 - 5425069447 = (2^3 * 26041^2) - (7^3 * 41^2 * 97^2). Does every natural number appear in this sequence? If so, do they appear infinitely often?
LINKS
Carlos Rivera, Problem 53, The Prime Puzzles and Problems Connection.
Eric Weisstein's World of Mathematics, Achilles number.
Wikipedia, Achilles number.
FORMULA
a(n) = A052486(n+1) - A052486(n).
MAPLE
f:= proc(n) local E; E:= map(t->t[2], ifactors(n)[2]); min(E)>1 and igcd(op(E))=1 end proc:
Achilles:= select(f, [$1..10^5]):
seq(Achilles[i+1]-Achilles[i], i=1..nops(Achilles)-1); # Robert Israel, Dec 13 2014
MATHEMATICA
achillesQ[n_] := With[{ee = FactorInteger[n][[All, 2]]}, Min[ee] > 1 && GCD @@ ee == 1];
Select[Range[10^4], achillesQ] // Differences (* Jean-François Alcover, Sep 26 2020 *)
PROG
(PARI) isA052486(n) = { n>1 & vecmin(factor(n)[, 2])>1 & !ispower(n); }
lista(nn) = {v = select(n->isA052486(n), vector(nn, i, i)); vector(#v-1, n, v[n+1] - v[n]); } \\ Michel Marcus, Nov 29 2014
(Python)
from math import isqrt
from sympy import mobius, integer_nthroot
def A247246(n):
def squarefreepi(n):
return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c, l = n+x+1, 0
j = isqrt(x)
while j>1:
k2 = integer_nthroot(x//j**2, 3)[0]+1
w = squarefreepi(k2-1)
c -= j*(w-l)
l, j = w, isqrt(x//k2**3)
c -= squarefreepi(integer_nthroot(x, 3)[0])-l+sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length()))
return c
return -(a:=bisection(f, n, n))+bisection(lambda x:f(x)+1, a, a) # Chai Wah Wu, Sep 10 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric Chen, Nov 28 2014
STATUS
approved