OFFSET
1,1
COMMENTS
29 is the first prime in this sequence, and it equals 1352 - 1323. Clearly, if the difference is prime, then these two Achilles numbers must be relatively prime, so primes appear in this sequence rarely. However, are there infinitely many n such that a(n) is prime?
The number 1 can also appear in this sequence, because it equals 5425069448 - 5425069447 = (2^3 * 26041^2) - (7^3 * 41^2 * 97^2). Does every natural number appear in this sequence? If so, do they appear infinitely often?
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Carlos Rivera, Problem 53, The Prime Puzzles and Problems Connection.
Eric Weisstein's World of Mathematics, Achilles number.
Wikipedia, Achilles number.
MAPLE
f:= proc(n) local E; E:= map(t->t[2], ifactors(n)[2]); min(E)>1 and igcd(op(E))=1 end proc:
Achilles:= select(f, [$1..10^5]):
seq(Achilles[i+1]-Achilles[i], i=1..nops(Achilles)-1); # Robert Israel, Dec 13 2014
MATHEMATICA
achillesQ[n_] := With[{ee = FactorInteger[n][[All, 2]]}, Min[ee] > 1 && GCD @@ ee == 1];
Select[Range[10^4], achillesQ] // Differences (* Jean-François Alcover, Sep 26 2020 *)
PROG
(PARI) isA052486(n) = { n>1 & vecmin(factor(n)[, 2])>1 & !ispower(n); }
lista(nn) = {v = select(n->isA052486(n), vector(nn, i, i)); vector(#v-1, n, v[n+1] - v[n]); } \\ Michel Marcus, Nov 29 2014
(Python)
from math import isqrt
from sympy import mobius, integer_nthroot
def A247246(n):
def squarefreepi(n):
return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c, l = n+x+1, 0
j = isqrt(x)
while j>1:
k2 = integer_nthroot(x//j**2, 3)[0]+1
w = squarefreepi(k2-1)
c -= j*(w-l)
l, j = w, isqrt(x//k2**3)
c -= squarefreepi(integer_nthroot(x, 3)[0])-l+sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length()))
return c
return -(a:=bisection(f, n, n))+bisection(lambda x:f(x)+1, a, a) # Chai Wah Wu, Sep 10 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric Chen, Nov 28 2014
STATUS
approved