login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247127
Number of tilings of a 5 X n rectangle using n pentominoes of shapes V, U, X, N.
2
1, 0, 0, 1, 4, 0, 9, 8, 24, 17, 78, 64, 227, 212, 664, 699, 2004, 2220, 6033, 7196, 18112, 22859, 54882, 72560, 166251, 229284, 505632, 721421, 1540532, 2264668, 4702135, 7092742, 14376450, 22165709, 44024116, 69154334, 134973515, 215459398, 414268932
OFFSET
0,5
LINKS
Wikipedia, Pentomino
FORMULA
G.f.: see Maple program.
MAPLE
gf:= -(4*x^18 +4*x^17 -8*x^16 -3*x^15 -9*x^14 +2*x^13 -3*x^12 +5*x^11 -7*x^10 +x^9 -7*x^8 -x^6 -2*x^5 -x^3+1) / (32*x^26 +32*x^25 -32*x^24 +8*x^23 -120*x^22 +12*x^21 -124*x^20 +36*x^19 -123*x^18 +35*x^17 -106*x^16 +20*x^15 -62*x^14 -23*x^13 -22*x^12 -36*x^11 +5*x^10 -18*x^9 +13*x^8 -4*x^7 +8*x^6 +2*x^5 +4*x^4 +2*x^3-1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..50);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 19 2014
STATUS
approved