Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Feb 06 2017 18:55:30
%S 1,0,0,1,4,0,9,8,24,17,78,64,227,212,664,699,2004,2220,6033,7196,
%T 18112,22859,54882,72560,166251,229284,505632,721421,1540532,2264668,
%U 4702135,7092742,14376450,22165709,44024116,69154334,134973515,215459398,414268932
%N Number of tilings of a 5 X n rectangle using n pentominoes of shapes V, U, X, N.
%H Alois P. Heinz, <a href="/A247127/b247127.txt">Table of n, a(n) for n = 0..1000</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Pentomino">Pentomino</a>
%F G.f.: see Maple program.
%p gf:= -(4*x^18 +4*x^17 -8*x^16 -3*x^15 -9*x^14 +2*x^13 -3*x^12 +5*x^11 -7*x^10 +x^9 -7*x^8 -x^6 -2*x^5 -x^3+1) / (32*x^26 +32*x^25 -32*x^24 +8*x^23 -120*x^22 +12*x^21 -124*x^20 +36*x^19 -123*x^18 +35*x^17 -106*x^16 +20*x^15 -62*x^14 -23*x^13 -22*x^12 -36*x^11 +5*x^10 -18*x^9 +13*x^8 -4*x^7 +8*x^6 +2*x^5 +4*x^4 +2*x^3-1):
%p a:= n-> coeff(series(gf, x, n+1), x, n):
%p seq(a(n), n=0..50);
%Y Cf. A174249, A233427, A247126.
%K nonn
%O 0,5
%A _Alois P. Heinz_, Nov 19 2014