login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187189
T(n,k) = Number of n-turn rook's tours on a k X k board summed over all starting positions.
7
1, 4, 0, 9, 8, 0, 16, 36, 8, 0, 25, 96, 108, 8, 0, 36, 200, 480, 288, 0, 0, 49, 360, 1400, 2208, 720, 0, 0, 64, 588, 3240, 9200, 9792, 1440, 0, 0, 81, 896, 6468, 27720, 58800, 40896, 2304, 0, 0, 100, 1296, 11648, 68208, 231840, 364800, 156672, 2664, 0, 0, 121, 1800
OFFSET
1,2
LINKS
FORMULA
Empirical: T(1,k) = k^2.
Empirical: T(2,k) = 2*k^3 - 2*k^2.
Empirical: T(3,k) = 4*k^4 - 10*k^3 + 6*k^2.
Empirical: T(4,k) = 8*k^5 - 34*k^4 + 48*k^3 - 22*k^2.
Empirical: T(5,k) = 16*k^6 - 98*k^5 + 228*k^4 - 238*k^3 + 92*k^2.
Empirical: T(6,k) = 32*k^7 - 258*k^6 + 846*k^5 - 1426*k^4 + 1234*k^3 - 428*k^2.
Empirical: T(7,k) = 64*n^8 - 642*n^7 + 2718*n^6 - 6346*n^5 + 8770*n^4 - 6788*n^3 + 2224*n^2.
Empirical: T(8,k) = 128*k^9 - 1538*k^8 + 7956*k^7 - 23556*k^6 + 44586*k^5 - 55218*k^4 + 40894*k^3 - 13252*k^2.
EXAMPLE
Table starts
.1.4....9......16.......25........36........49........64.......81.....100
.0.8...36......96......200.......360.......588.......896.....1296....1800
.0.8..108.....480.....1400......3240......6468.....11648....19440...30600
.0.8..288....2208.....9200.....27720.....68208....146048...282528..505800
.0.0..720....9792....58800....231840....705600...1800960..4046112.8251200
.0.0.1440...40896...364800...1902240...7197120..21960960.57407616
.0.0.2304..156672..2169600..15220800..72182880.264520704
.0.0.2664..551232.12319200.118332000.709921800
.0.0.1512.1760256.66746400.893246400
.0.0....0.5013504
Some n=3 solutions for 3 X 3
..0..0..1....0..0..3....3..2..0....1..0..0....0..0..1....0..0..0....0..0..3
..0..0..0....0..0..2....0..1..0....0..0..0....0..3..2....0..0..0....0..0..1
..0..3..2....0..0..1....0..0..0....2..0..3....0..0..0....1..3..2....0..0..2
CROSSREFS
Row 2 is A035006.
Sequence in context: A352672 A188147 A187286 * A021248 A269843 A247127
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 06 2011
STATUS
approved