OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..200
FORMULA
a(n) = n! * [x^n] exp(Sum_{d|n} (-LambertW(-x))^d/d).
a(n) = A246522(n,n).
MAPLE
with(numtheory):
egf:= k-> exp(add((-LambertW(-x))^d/d, d=divisors(k))):
a:= n-> n!*coeff(series(egf(n), x, n+1), x, n):
seq(a(n), n=0..20);
# second Maple program:
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1, k)*
(i-1)!^j, j=0..`if`(irem(k, i)=0, n/i, 0))))
end:
a:= n-> add(b(j$2, n)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
Sum[multinomial[n, Join[{n - i*j},
Table[i, {j}]]]/j!*b[n - i*j, i - 1, k]*(i - 1)!^j,
{j, 0, If[Mod[k, i] == 0, n/i, 0]}]]];
a[n_] := If[n==0, 1, Sum[b[j, j, n]*n^(n-j)*Binomial[n-1, j-1], {j, 0, n}]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 01 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 28 2014
STATUS
approved