login
A246522
Number A(n,k) of endofunctions on [n] whose cycle lengths are divisors of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
11
1, 1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 1, 4, 16, 0, 1, 1, 3, 25, 125, 0, 1, 1, 4, 18, 218, 1296, 0, 1, 1, 3, 25, 157, 2451, 16807, 0, 1, 1, 4, 16, 224, 1776, 33832, 262144, 0, 1, 1, 3, 27, 125, 2601, 24687, 554527, 4782969, 0, 1, 1, 4, 16, 250, 1320, 37072, 407464, 10535100, 100000000, 0
OFFSET
0,9
LINKS
FORMULA
E.g.f. of column k: exp(Sum_{d|k} (-LambertW(-x))^d/d).
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, ...
0, 3, 4, 3, 4, 3, 4, ...
0, 16, 25, 18, 25, 16, 27, ...
0, 125, 218, 157, 224, 125, 250, ...
0, 1296, 2451, 1776, 2601, 1320, 2951, ...
0, 16807, 33832, 24687, 37072, 17671, 42552, ...
MAPLE
with(numtheory):
egf:= k-> exp(add((-LambertW(-x))^d/d, d=divisors(k))):
A:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n):
seq(seq(A(n, d-n), n=0..d), d=0..12);
# second Maple program:
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1, k)*
(i-1)!^j, j=0..`if`(irem(k, i)=0, n/i, 0))))
end:
A:=(n, k)->add(b(j, min(k, j), k)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
egf[k_] := Exp[Sum[(-ProductLog[-x])^d/d, {d, Divisors[k]}]];
A[1, 0] = 0; A[0, _] = 1; A[1, _] = 1; A[_, 0] = 0;
A[n_, k_] := n!*SeriesCoefficient[egf[k], {x, 0, n}];
Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 04 2014, translated from first Maple program *)
multinomial[n_, k_List] := n!/Times @@ (k!);
Unprotect[Power]; 0^0 = 1; Protect[Power];
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j!*b[n - i*j, i-1, k]*(i-1)!^j, {j, 0, If[Mod[k, i] == 0, n/i, 0]}]]];
A[n_, k_] := Sum[b[j, Min[k, j], k]*n^(n-j)*Binomial[n-1, j-1], {j, 0, n}];
Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Nov 22 2023, from 2nd Maple program *)
CROSSREFS
Main diagonal gives A246531.
Sequence in context: A029358 A088512 A094921 * A140166 A242782 A011256
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 28 2014
STATUS
approved