login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246524
Number of endofunctions on [n] whose cycle lengths are divisors of 4.
2
1, 1, 4, 25, 224, 2601, 37072, 626137, 12227280, 271086625, 6727858496, 184818121929, 5568152828416, 182575550335465, 6473161538599680, 246781048203043561, 10067677495565927168, 437653901985319521153, 20197310874805488471040, 986221173076368356013625
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(Sum_{d|4} (-LambertW(-x))^d/d).
MAPLE
with(numtheory):
egf:= k-> exp(add((-LambertW(-x))^d/d, d=divisors(k))):
a:= n-> n!*coeff(series(egf(4), x, n+1), x, n):
seq(a(n), n=0..25);
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)*
(i-1)!^j, j=0..`if`(irem(4, i)=0, n/i, 0))))
end:
a:= n-> add(b(j, min(4, j))*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..25);
CROSSREFS
Column k=4 of A246522.
Sequence in context: A246530 A268163 A050386 * A246528 A246951 A302587
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 28 2014
STATUS
approved