login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of endofunctions on [n] whose cycle lengths are divisors of n.
2

%I #9 May 01 2022 14:01:24

%S 1,1,4,18,224,1320,42552,262864,12232320,169594560,6117023600,

%T 61920993024,8022787347456,56694391376896,5193025319432160,

%U 174746314698336000,10338252997184749568,121439552019384139776,26096843176349347142208,262144006402373705728000

%N Number of endofunctions on [n] whose cycle lengths are divisors of n.

%H Alois P. Heinz, <a href="/A246531/b246531.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = n! * [x^n] exp(Sum_{d|n} (-LambertW(-x))^d/d).

%F a(n) = A246522(n,n).

%p with(numtheory):

%p egf:= k-> exp(add((-LambertW(-x))^d/d, d=divisors(k))):

%p a:= n-> n!*coeff(series(egf(n), x, n+1), x, n):

%p seq(a(n), n=0..20);

%p # second Maple program:

%p with(combinat):

%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1, k)*

%p (i-1)!^j, j=0..`if`(irem(k, i)=0, n/i, 0))))

%p end:

%p a:= n-> add(b(j$2, n)*n^(n-j)*binomial(n-1, j-1), j=0..n):

%p seq(a(n), n=0..20);

%t multinomial[n_, k_List] := n!/Times @@ (k!);

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,

%t Sum[multinomial[n, Join[{n - i*j},

%t Table[i, {j}]]]/j!*b[n - i*j, i - 1, k]*(i - 1)!^j,

%t {j, 0, If[Mod[k, i] == 0, n/i, 0]}]]];

%t a[n_] := If[n==0, 1, Sum[b[j, j, n]*n^(n-j)*Binomial[n-1, j-1], {j, 0, n}]];

%t Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, May 01 2022, after _Alois P. Heinz_ *)

%Y Main diagonal of A246522.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Aug 28 2014