The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A246449 Numbers n such that no cube can end in n (in the sense of the respective decimal expansions). 3
 10, 14, 15, 18, 20, 22, 26, 30, 34, 35, 38, 40, 42, 45, 46, 50, 54, 55, 58, 60, 62, 65, 66, 70, 74, 78, 80, 82, 85, 86, 90, 94, 95, 98, 100, 102, 105, 106, 108, 110, 114, 115, 116, 118, 120, 122, 124, 126, 130, 132, 134, 135, 138, 140, 142, 145, 146, 148, 150, 154, 155 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Complement of A246422. The terms with n digits are the complement in [10^(n-1) .. 10^n-1] of the set of residues of k^3 mod 10^n for 10^((n-1)/3) < k < 10^n. - M. F. Hasler, Jan 26 2020 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 MAPLE seq(op(sort(convert({\$10^(d-1)..10^d-1} minus map(t -> t^3 mod 10^d, {\$0..10^d-1}), list))), d=1..3); # Robert Israel, Jan 26 2020 PROG (PARI) v=vector(1000); for(k=1, 10^4, my(q=k^3, w=digits(q)); for(j=0, 2, v[1+fromdigits(w[#w-j..#w])]++)); for(k=1, 160, if(v[k]==0, print1(k-1, ", "))) \\ Hugo Pfoertner, Jan 26 2020 (PARI) A246449_row(n)=setminus([10^(n-1)..10^n-1], Set([k^3|k<-[sqrtnint(10^(n-1), 3)+1..10^n-1]]%10^n)) \\ Yields the n-digit terms. - M. F. Hasler, Jan 26 2020 CROSSREFS Cf. A246422. Sequence in context: A102361 A280032 A227010 * A121836 A317590 A081062 Adjacent sequences:  A246446 A246447 A246448 * A246450 A246451 A246452 KEYWORD nonn,base AUTHOR Derek Orr, Aug 26 2014 EXTENSIONS Corrected by Robert Israel, Jan 26 2020 Name edited and incorrect PARI program deleted by M. F. Hasler, Jan 26 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 8 02:26 EDT 2021. Contains 343652 sequences. (Running on oeis4.)