login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245911
Number of pairs of endofunctions f, g on [n] satisfying f(g^n(i)) = f(i) for all i in [n].
3
1, 1, 12, 207, 9184, 173225, 46097856, 729481375, 454190410752, 30607186160529, 12762075858688000, 1036636706945881151, 3080713389889966460928, 145084860487902521548921, 124325137916420574135066624, 56537825009822523196823829375
OFFSET
0,3
LINKS
MAPLE
with(combinat):
T:= proc(n, j) T(n, j):= binomial(n-1, j-1)*n^(n-j) end:
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, x^n,
expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
x^(igcd(i, k)*j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
a:= n-> add((p-> add(n^i*T(n, j)* coeff(p, x, i),
i=0..degree(p)))(b(j$2, n)), j=0..n):
seq(a(n), n=0..20);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = Function[{x}, If[n == 0 || i == 1, x^n, Expand[Sum[(i - 1)!^j*multinomial[n, Join[{n - i*j}, Array[i&, j]]]/j!* x^(GCD[i, k]*j)*b[n - i*j, i - 1, k][x], {j, 0, n/i}]]]];
a[n_] := If[n == 0, 1, Sum[Binomial[n - 1, j - 1]*n^(n - j)*b[j, j, n][n], {j, 0, n}]];
a /@ Range[0, 20] (* Jean-François Alcover, Oct 03 2019, after Alois P. Heinz *)
CROSSREFS
Main diagonal of A245910.
Cf. A245988.
Sequence in context: A151590 A297311 A217703 * A127909 A307691 A129466
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 06 2014
STATUS
approved