|
|
A245531
|
|
a(n) = Round((gamma^2 + 1)/gamma^(n-2)).
|
|
1
|
|
|
0, 1, 1, 2, 4, 7, 12, 21, 36, 62, 108, 187, 325, 563, 975, 1688, 2925, 5068, 8780, 15210, 26351, 45652, 79091, 137021, 237383, 411255, 712481, 1234342, 2138441, 3704752, 6418316, 11119441, 19263928, 33373883, 57818741, 100168351, 173537132, 300645222
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
a(n)/a(n+1) converges to Euler's constant.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
|
|
EXAMPLE
|
a(6) = 12 because (gamma^2 + 1)/gamma^4 = 12.0097973251....
|
|
MAPLE
|
A245531:=n->round((gamma^2+1)/gamma^(n-2)): seq(A245531(n), n=0..50); # Wesley Ivan Hurt, Jul 27 2014
|
|
MATHEMATICA
|
Table[Round[(EulerGamma^2 +1)/EulerGamma^(n-2)], {n, 0, 50}] (* G. C. Greubel, Sep 04 2018 *)
|
|
PROG
|
(PARI) for(n=0, 37, print1(round((Euler^2+1)/Euler^(n-2)), ", "));
(Magma) R:= RealField(50); [Round((EulerGamma(R)^2 +1 )/EulerGamma(R)^(n-2)): n in [0..50]]; // G. C. Greubel, Sep 04 2018
|
|
CROSSREFS
|
Cf. A001620.
Sequence in context: A306306 A357947 A227376 * A189593 A100671 A189600
Adjacent sequences: A245528 A245529 A245530 * A245532 A245533 A245534
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Arkadiusz Wesolowski, Jul 25 2014
|
|
STATUS
|
approved
|
|
|
|