login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189593
Number of permutations of 1..n with displacements restricted to {-6,-5,-4,-3,-2,0,1}.
2
1, 1, 2, 4, 7, 12, 21, 36, 62, 108, 188, 326, 565, 980, 1700, 2949, 5116, 8875, 15395, 26705, 46325, 80360, 139400, 241816, 419476, 727661, 1262267, 2189644, 3798357, 6588977, 11429841, 19827246, 34394152, 59663238, 103497303, 179535876
OFFSET
1,3
COMMENTS
a(n+1) is the number of multus bitstrings of length n with no runs of 7 ones. - Steven Finch, Mar 25 2020
LINKS
Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
FORMULA
Empirical: a(n) = a(n-1) +a(n-3) +a(n-4) +a(n-5) +a(n-6) +a(n-7).
Empirical g.f.: x*(1 + x^2)*(1 + x^3 + x^4) / ((1 - x + x^2)*(1 - x^2 - 2*x^3 - 2*x^4 - x^5)). - Colin Barker, May 02 2018
EXAMPLE
Some solutions for n=14:
..1....4....3....1....4....5....1....1....3....1....1....4....1....1....1....3
..5....1....1....5....1....1....5....7....1....2....2....1....5....4....7....1
..2....2....2....2....2....2....2....2....2....5....7....2....2....2....2....2
..3....3....4....3....3....3....3....3....4....3....3....3....3....3....3....4
..4....8....7....4....5....4....4....4...10....4....4....5....4....5....4....7
..6....5....5....6....6....6...11....5....5....8....5...10....6....9....5....5
..7....6....6...10....7....7....6....6....6....6....6....6...11....6....6....6
.10....7...10....7....8...11....7....8....7....7....8....7....7....7....8...12
..8....9....8....8...13....8....8....9....8...13....9....8....8....8....9....8
..9...14....9....9....9....9....9...10....9....9...14....9....9...14...12....9
.13...10...11...11...10...10...10...11...14...10...10...11...10...10...10...10
.11...11...14...14...11...14...14...14...11...11...11...12...12...11...11...11
.12...12...12...12...12...12...12...12...12...12...12...13...13...12...13...13
.14...13...13...13...14...13...13...13...13...14...13...14...14...13...14...14
CROSSREFS
Sequence in context: A357947 A227376 A245531 * A100671 A189600 A005251
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 24 2011
STATUS
approved