Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Mar 25 2020 10:51:18
%S 1,1,2,4,7,12,21,36,62,108,188,326,565,980,1700,2949,5116,8875,15395,
%T 26705,46325,80360,139400,241816,419476,727661,1262267,2189644,
%U 3798357,6588977,11429841,19827246,34394152,59663238,103497303,179535876
%N Number of permutations of 1..n with displacements restricted to {-6,-5,-4,-3,-2,0,1}.
%C a(n+1) is the number of multus bitstrings of length n with no runs of 7 ones. - _Steven Finch_, Mar 25 2020
%H R. H. Hardin, <a href="/A189593/b189593.txt">Table of n, a(n) for n = 1..200</a>
%H Steven Finch, <a href="https://arxiv.org/abs/2003.09458">Cantor-solus and Cantor-multus distributions</a>, arXiv:2003.09458 [math.CO], 2020.
%F Empirical: a(n) = a(n-1) +a(n-3) +a(n-4) +a(n-5) +a(n-6) +a(n-7).
%F Empirical g.f.: x*(1 + x^2)*(1 + x^3 + x^4) / ((1 - x + x^2)*(1 - x^2 - 2*x^3 - 2*x^4 - x^5)). - _Colin Barker_, May 02 2018
%e Some solutions for n=14:
%e ..1....4....3....1....4....5....1....1....3....1....1....4....1....1....1....3
%e ..5....1....1....5....1....1....5....7....1....2....2....1....5....4....7....1
%e ..2....2....2....2....2....2....2....2....2....5....7....2....2....2....2....2
%e ..3....3....4....3....3....3....3....3....4....3....3....3....3....3....3....4
%e ..4....8....7....4....5....4....4....4...10....4....4....5....4....5....4....7
%e ..6....5....5....6....6....6...11....5....5....8....5...10....6....9....5....5
%e ..7....6....6...10....7....7....6....6....6....6....6....6...11....6....6....6
%e .10....7...10....7....8...11....7....8....7....7....8....7....7....7....8...12
%e ..8....9....8....8...13....8....8....9....8...13....9....8....8....8....9....8
%e ..9...14....9....9....9....9....9...10....9....9...14....9....9...14...12....9
%e .13...10...11...11...10...10...10...11...14...10...10...11...10...10...10...10
%e .11...11...14...14...11...14...14...14...11...11...11...12...12...11...11...11
%e .12...12...12...12...12...12...12...12...12...12...12...13...13...12...13...13
%e .14...13...13...13...14...13...13...13...13...14...13...14...14...13...14...14
%K nonn
%O 1,3
%A _R. H. Hardin_, Apr 24 2011