login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245382
Primes whose product of digits is a semiprime.
1
19, 23, 37, 41, 53, 61, 73, 127, 137, 157, 173, 191, 251, 271, 313, 317, 331, 521, 571, 751, 911, 1123, 1153, 1213, 1217, 1231, 1321, 1531, 1571, 1721, 2113, 2131, 2311, 2711, 3121, 3511, 4111, 5113, 5171, 5711, 7121, 7151, 7211, 11119, 11161, 11173, 11177, 11213
OFFSET
1,1
COMMENTS
The linked table includes probable primes. - Jens Kruse Andersen, Jul 21 2014
LINKS
K. D. Bajpai and Jens Kruse Andersen, Table of n, a(n) for n = 1..10000 (first 370 terms from K. D. Bajpai)
EXAMPLE
137 is prime. 1 * 3 * 7 = 21 = 3 * 7, which is semiprime.
251 is prime. 2 * 5 * 1 = 10 = 2 * 5, which is semiprime.
MATHEMATICA
Select[Prime[Range[1000]], PrimeOmega[(Times @@ IntegerDigits[#])] == 2 &]
PROG
(PARI) f(n, b, d) = if(d, for(i=1, 9, if(b+bigomega(i)<=2, f(10*n+i, b+bigomega(i), d-1))), if(b==2 && isprime(n), print1(n", ")))
for(d=1, 8, f(0, 0, d)) \\ f(0, 0, d) prints d-digit terms. Jens Kruse Andersen, Jul 21 2014
CROSSREFS
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, Jul 20 2014
STATUS
approved