login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245061
Prime numbers p such that p - primepi(p) is a square, where primepi is the prime counting function.
1
2, 3, 37, 541, 647, 881, 1151, 1301, 1627, 2377, 3271, 5179, 5641, 10501, 11597, 11821, 18503, 20543, 23339, 31259, 35461, 38669, 39499, 42901, 43331, 44201, 45523, 51973, 53407, 67213, 67757, 70489, 72169, 77291, 98893, 99551, 128291, 139721, 145207, 150011
OFFSET
1,1
LINKS
FORMULA
a(n) = prime(A064370(n+1)). - Michel Marcus, Jul 11 2014
EXAMPLE
37 is in the sequence because primepi(37) = 12, and 37 - 12 = 5^2.
541 is in the sequence because primepi(541) = 100, and 541 - 100 = 21^2.
547 is not in the sequence because primepi(547) = 101, and 547 - 101 = 446, which is not a perfect square.
MAPLE
with(numtheory): A245061:=n->`if`(type(sqrt(n-pi(n)), integer) and type(n, prime), n, NULL): seq(A245061(n), n=2..10^5); # Wesley Ivan Hurt, Jul 10 2014
MATHEMATICA
Select[Prime[Range[200]], IntegerQ[Sqrt[# - PrimePi[#]]] &] (* Alonso del Arte, Jul 11 2014 *)
PROG
(PARI) select(p->issquare(p-primepi(p)), primes(15000)) \\ Michel Marcus, Jul 11 2014
(Python)
import sympy, gmpy2
[sympy.prime(n) for n in range(1, 10**6) if gmpy2.is_square(sympy.prime(n)-n)] # Chai Wah Wu, Jul 11 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Chai Wah Wu, Jul 10 2014
EXTENSIONS
More terms from Michel Marcus, Jul 11 2014
STATUS
approved