login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245059 a(n) = Sum_{k=1..n} C(n-1,k-1) * S2(n,k) * 2^(n-k) for n>0, a(0)=1, where S2(n,k) = A048993(n,k) are Stirling numbers of the 2nd kind. 2
1, 1, 3, 17, 129, 1177, 12463, 149053, 1975473, 28628865, 449059179, 7562334793, 135837896769, 2588529249737, 52093016105575, 1102851978691749, 24480094135644513, 568066476383361793, 13745454515733689427, 346020796943921077057, 9043636093339718229697, 244954584886648170627641 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..21.

FORMULA

O.g.f.: Sum_{n>=0} (n*x)^n/(1-2*n*x)^n * exp(-n*x/(1-2*n*x)) / n!.

EXAMPLE

O.g.f.: A(x) = 1 + x + 3*x^2 + 17*x^3 + 129*x^4 + 1177*x^5 + 12463*x^6 +...

where

A(x) = 1 + x/(1-2*x)*exp(-x/(1-2*x)) + 2^2*x^2/(1-4*x)^2*exp(-2*x/(1-4*x))/2! + 3^3*x^3/(1-6*x)^3*exp(-3*x/(1-6*x))/3! + 4^4*x^4/(1-8*x)^4*exp(-4*x/(1-8*x))/4! +...

simplifies to a power series in x with integer coefficients.

Illustrate the definition of the terms by:

a(2) = 1*1*2 + 1*1 = 3;

a(3) = 1*1*2^2 + 2*3*2 + 1*1 = 17;

a(4) = 1*1*2^3 + 3*7*2^2 + 3*6*2 + 1*1 = 129;

a(5) = 1*1*2^4 + 4*15*2^3 + 6*25*2^2 + 4*10*2 + 1*1 = 1177;

a(6) = 1*1*2^5 + 5*31*2^4 + 10*90*2^3 + 10*65*2^2 + 5*15*2 + 1*1 = 12463; ...

PROG

(PARI) {a(n)=if(n==0, 1, sum(k=1, n, binomial(n-1, k-1)*polcoeff(1/prod(i=0, k, 1-i*x +x*O(x^(n-k))), n-k)*2^(n-k)))}

for(n=0, 25, print1(a(n), ", "))

(PARI) {a(n)=polcoeff(sum(k=0, n+1, (k*x)^k/(1-2*k*x)^k*exp(-k*x/(1-2*k*x+x*O(x^n)))/k!), n)}

for(n=0, 25, print1(a(n), ", "))

CROSSREFS

Cf. A134055, A245060, A218667, A218670.

Sequence in context: A187613 A179300 A199493 * A321587 A089815 A328402

Adjacent sequences:  A245056 A245057 A245058 * A245060 A245061 A245062

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 10 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 16 19:17 EST 2019. Contains 329201 sequences. (Running on oeis4.)