The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245033 4*(n + 7)^3 - 27*(n + 7)^2 = (4*n +1)*(n+7)^2. 2
 49, 320, 729, 1300, 2057, 3024, 4225, 5684, 7425, 9472, 11849, 14580, 17689, 21200, 25137, 29524, 34385, 39744, 45625, 52052, 59049, 66640, 74849, 83700, 93217, 103424, 114345, 126004, 138425, 151632, 165649, 180500, 196209, 212800, 230297, 248724 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The discriminant D of the Cardano Tartaglia equation x^3 + p*x + q = 0 is D = -27*q^2 - 4*p^3. Let q = p = -n then D = -27*(-n)^2 - 4*(-n)^3 = n^2*(4*n - 27), D > 0 if n >= 7, « casus irreducibilis ». To start with (offset 0,1) n is substituted by (n + 7) with the result a(n) = 4*(n+7)^3 - 27*(n + 7)^2 equivalent to a(n) = (4*n +1)*(n+7)^2. LINKS Freimut Marschner, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = 4*(n + 7)^3 - 27*(n + 7)^2. G.f.: (108*x^3-257*x^2+124*x+49) / (x-1)^4. - Colin Barker, Jul 11 2014 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 4, with inputs a(0), ..., a(3). EXAMPLE n = 0, a(0) = 4*7^3 - 27*7^2 = (4*7 - 27)*7^2 = 49. MAPLE A245033:=n->4*(n + 7)^3 - 27*(n + 7)^2: seq(A245033(n), n=0..30); # Wesley Ivan Hurt, Jul 12 2014 MATHEMATICA Table[4 (n + 7)^3 - 27 (n + 7)^2, {n, 0, 30}] (* Wesley Ivan Hurt, Jul 12 2014 *) LinearRecurrence[{4, -6, 4, -1}, {49, 320, 729, 1300}, 40] (* Harvey P. Dale, Dec 26 2014 *) PROG (PARI) vector(100, n, (n+6)^2*(4*n-3)) \\ Colin Barker, Jul 11 2014 (PARI) Vec((108*x^3-257*x^2+124*x+49)/(x-1)^4 + O(x^100)) \\ Colin Barker, Jul 11 2014 (Magma) [4*(n + 7)^3 - 27*(n + 7)^2 : n in [0..30]]; // Wesley Ivan Hurt, Jul 12 2014 CROSSREFS A000290 (squares: a(n) = n^2), A000578 (cubes: a(n) = n^3), A028347 (Discriminant of quadratic equation : a(n) = n^2 - 4*n, n > 2). Sequence in context: A227079 A251222 A250967 * A340124 A017474 A335389 Adjacent sequences: A245030 A245031 A245032 * A245034 A245035 A245036 KEYWORD nonn,easy AUTHOR Freimut Marschner, Jul 10 2014 EXTENSIONS xref deleted. Edited: recurrence according to index link added and checked. - Wolfdieter Lang, Jul 28 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 11:41 EST 2023. Contains 367656 sequences. (Running on oeis4.)