login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245033 4*(n + 7)^3 - 27*(n + 7)^2 = (4*n +1)*(n+7)^2. 2
49, 320, 729, 1300, 2057, 3024, 4225, 5684, 7425, 9472, 11849, 14580, 17689, 21200, 25137, 29524, 34385, 39744, 45625, 52052, 59049, 66640, 74849, 83700, 93217, 103424, 114345, 126004, 138425, 151632, 165649, 180500, 196209, 212800, 230297, 248724 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
The discriminant D of the Cardano Tartaglia equation x^3 + p*x + q = 0 is D = -27*q^2 - 4*p^3. Let q = p = -n then D = -27*(-n)^2 - 4*(-n)^3 = n^2*(4*n - 27), D > 0 if n >= 7, « casus irreducibilis ». To start with (offset 0,1) n is substituted by (n + 7) with the result a(n) = 4*(n+7)^3 - 27*(n + 7)^2 equivalent to a(n) = (4*n +1)*(n+7)^2.
LINKS
FORMULA
a(n) = 4*(n + 7)^3 - 27*(n + 7)^2.
G.f.: (108*x^3-257*x^2+124*x+49) / (x-1)^4. - Colin Barker, Jul 11 2014
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 4, with inputs a(0), ..., a(3).
EXAMPLE
n = 0, a(0) = 4*7^3 - 27*7^2 = (4*7 - 27)*7^2 = 49.
MAPLE
A245033:=n->4*(n + 7)^3 - 27*(n + 7)^2: seq(A245033(n), n=0..30); # Wesley Ivan Hurt, Jul 12 2014
MATHEMATICA
Table[4 (n + 7)^3 - 27 (n + 7)^2, {n, 0, 30}] (* Wesley Ivan Hurt, Jul 12 2014 *)
LinearRecurrence[{4, -6, 4, -1}, {49, 320, 729, 1300}, 40] (* Harvey P. Dale, Dec 26 2014 *)
PROG
(PARI) vector(100, n, (n+6)^2*(4*n-3)) \\ Colin Barker, Jul 11 2014
(PARI) Vec((108*x^3-257*x^2+124*x+49)/(x-1)^4 + O(x^100)) \\ Colin Barker, Jul 11 2014
(Magma) [4*(n + 7)^3 - 27*(n + 7)^2 : n in [0..30]]; // Wesley Ivan Hurt, Jul 12 2014
CROSSREFS
A000290 (squares: a(n) = n^2), A000578 (cubes: a(n) = n^3), A028347 (Discriminant of quadratic equation : a(n) = n^2 - 4*n, n > 2).
Sequence in context: A227079 A251222 A250967 * A340124 A017474 A335389
KEYWORD
nonn,easy
AUTHOR
Freimut Marschner, Jul 10 2014
EXTENSIONS
xref deleted.
Edited: recurrence according to index link added and checked. - Wolfdieter Lang, Jul 28 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 11:41 EST 2023. Contains 367656 sequences. (Running on oeis4.)