OFFSET
1,2
COMMENTS
Number of divisors of k^24-1 for k = 2..10: 96 (2), 384 (3), 768 (4), 1152 (5), 512 (6), 16128 (7), 8192 (8), 14336 (9), 2048 (10).
The following 36 triangular numbers belong to this sequence: 1, 3, 6, 10, 15, 36, 45, 78, 120, 171, 190, 300, 325, 741, 780, 2080, 2628, 2850, 4560, 8256, 8385, 14706, 16290, 18528, 74691, 170820, 334153, 450775, 720600, 1664400, 4191960, 5915080, 8654880, 19068400, 1730160900, 23947653922570801800.
There are 50 divisors a(k) such that a(k) is divisible by k.
REFERENCES
Boris A. Kordemsky, The Moscow Puzzles: 359 Mathematical Recreations, C. Scribner's Sons (1972), Chapter XIII, Paragraph 349.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..16128
Edward Barbeau and Samer Seraj, Sum of Cubes is Square of Sum, arXiv:1306.5257 [math.NT]
EXAMPLE
191581231380566414400 = 2^6*3^2*5^2*13*19*43*73*181*193*409*1201.
MATHEMATICA
Divisors[7^24 - 1]
PROG
(PARI) divisors(7^24-1)
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Bruno Berselli, Jul 10 2014
STATUS
approved